Intravenous Al
Top-level Specification
(The Concept of Operations)

rev. 1b

Mark Grimes
obecian@packetninja.net || obecian@openbsd.org

15th October 2001

“TCP/IP consists of a suite of protocols,
each with their own unique packet structures.
RFCs dictate the standards in the form of pol-
icy and implementation. A conformity amongst
applications at higher levels requires detailed
knowledge of underlying network layer defini-
tion. Therefore, with knowledge of this uni-
verse, we can assert the TCP/IP suite has a
finite number of protocol/field combinations
that would represent legal moves in order to
maintain connection integrity with respect to
time. Through the field of Artificial Intelli-
gence, a granular, module-oriented code base
can be developed to exploit the knowledge of

"all-plausible moves’.

Abstract

Intravenous (or 1V) is a proof-of-concept Intelligent
Agent project, that focuses on exploring automated raw
socket connections with supplemental attack/defense en-
gines, across a secure Client/Server design. This is essen-
tially, a “distributed packet injection tool on a stick” that
can make “intelligent” decisions, utilizing a detailed state
table, based on passive connection information gathering,
and multi-protocol active discovery.

IV is referred to as an “Agent” throughout this document.
An “Agent” is anything (code) that can perceive an envi-
ronment through the use of sensors and effectors. “Agent”
is a frequently used Artificial Intelligence term to describe
the imaginary logical human that automates a process that
would normally require either a legitimate Client/server
connection or extremely fast human intervention.

This is the first whitepaper in a series, outlining the de-
velopment and case studies from the Intravenous Project.
Revisions of this document are restricted to implementa-
tion (such as [abstract] datatypes) changes ONLY, to pro-
mote maximum optimization. NO changes should ever
occur to model state flow.

Project Goals

e OS dependent code-base for dependable APIs

e Active and passive network/host discovery

e TCP/IP header/payload monitoring of in-scope pack-
ets

o Client/Server Model

e Extensive TCP/IP network attack infrastructure
e Extensive secure channel communication

e Limited protocol attack discovery

e Limited self-awareness and memory

Design Criteria

The project development of Intravenous involved the
commitment of decisions that together have both positive
and negative implications. Many conversations transpired
after the initial presentation of the draft model at ToorCon
http: // www. t oor con. conf * in September 2000. After
considering all the constructive criticism in discussions
with mathematicians, Al researchers, and network coders
alike, | assembled strict guidelines to base all forward
logic, for the duration of the project.

Client/Server Model

When 1V was first presented, the suggested plan was to
create a tool that comprised the entire Agent. Upon execu-
tion, the user would be placed in a command-line environ-
ment where interactive injection and filtering could take
place. The notion was that IV would be OS independent,
and the code would be installed on sequentially com-
promised hosts. The project was initially to use Neme-
sis http://wwv. packet ni nj a. net/nenesi s/? to in-
ject packets, with Libnet htt p: // www. packet f actory.
net/ Li bnet /2 and Pcap http://ww. t cpdunp. org/ *
as core dependencies.

1san Diego security conference

2aNINE protocol TCP/IP packet crafting tool-suite

3Mike Schiffman’s portable packet construction API
(http://www.packetfactory.net/Libnet/)

4LBNL’s portable packet capture library

The problem with this model is that it fails to provide a
solution for many of the project goals. Specifically,

1. Lack of strong cryptography and entropy generation
available in some OS’s.

2. Limited UNIX flat file host-based awareness.

3. An Agent installed on an insecure (untrusted) OS, is
a useless Agent.

4. Lack of correctness in code in some OS’s causes un-
predictable response.

5. Some OS’s violate RFC specifications in either pro-
tocol request or replies. Some OS’s utilize known
reserved fields of protocol headers.

6. The original model limited distributed Agent com-
munication (no point of origin), and introduced mul-
tiple points of failure due to problems with Client
software possibly afflicting the server (Agent) code.

Clearly, the original project model does not meet the
project goals. It relies on third-party software, and inti-
mate knowledge of how each protocol works across each
Operating System. Considering, ICMP is perhaps the
only intimate research we have, thanks to Ofir Arkin®, we
cannot trust the interaction between each OS kernel and
userland (Agent). It is perfectly acceptible to not trust
packets arriving from foreign hosts, but it is not accepti-
ble to have to “second guess” each and every packet that
comes from each distributed Agent.

To satisfy our need for Agent communication, we turn to
the Client/Server infrastructure of network attack. The re-
vised method rolls the Agent into a server daemon. The
server will be waiting on a user defined port for a con-
nection request. The user executes the IV Client, which
provides either an interactive or scripted (batch) commu-
nication between it and the connected Agents. The Agent
challenges upon connection request and further communi-
cation occurs across a Blowfish-encrypted, strongly con-
nected TCP tunnel. Instead of a DDoS attack, which is
solely positioned to launch a particular Denial of Service

Shttp://www.sys-security.com/

attack across the network (among other “master/slave” di-
agnostic commands), we are providing each “slave” with
the ability to launch carefully crafted packets. Anything
from detailed IP stack and network based vulnerability, to
distributed recon on a firewall on multiple unique inter-
faces could be plausible.

The dotted line represents the Agent-to-Agent commu-
nication. This is an indirect communication that occurs
through the “point of origin” (the Client). The proxying
of communication (if any) between Agents through the
Client, facilitates clean security practice. No communica-
tion can be forged Agent-to-Agent or Client-Agent with-
out establishing an authenticated, strongly encrypted TCP
connection.

Covert channel communication through “magic packets”
can be replayed. If Agent-to-Agent communication has
the capability of generating change that taints the Agent’s
state tables, then that same ability could be employed by
an attacker attempting to desynch the Agents, or use them
against the Agent deployer.

The goal is the Client makes assertions about tasks for
the Agent(s), and the Agent(s) communicates back to the
Client for the user to oversee. When used to facilitate
an injection that traverses two segments occupied by an
Agent in each, it allows for a differential in header infor-
mation to glean additional data about the network (such
as MAC addresses and TTL decrements for enumeration,
and analysis of transparent (pass-through) devices)

Two Agents strategically placed on segments where for-
eign connection endpoints are located, could literally
“take the BLIND out of BLIND Spoofing” by presenting
two pieces of half duplex information, and a communica-
tion channel capable of reassembling a full duplex con-
nection.

Likewise, two Agents placed on different segments could
equally engage in ARP spoofing, to increase the amount
of traffic sniffed.

Operating System

To warrant both host and network based association in-
side the Agent, portability must be sacrificed to maxi-
mize awareness. The concept of self-awareness cannot be
achieved if the Agent has no idea about the world around
it, unless there exists a highly restrictive packet capture
filter. Access to routing tables and the in-kernel packet
filter should be available. With knowledge of both host
and network state, an agent can be taught to shunt con-
nections from hostile foreign nodes, or even attack them
from multiple agents... indicative of a Distributed Denial
of Service attack through “conditional response”.

The most important element of the effective Agent, is
TRUST. If we cannot guarantee that the computer software
will execute a task with minimal fault, then the automa-
tion becomes counter-productive. Since our Agent has the
capacity to launch a devastating attack, sometimes with-
out user-intervention, the model must use an OS that does
not compromise security for functionality and/or perfor-
mance.

Agent trust can be achieved only if it meets two criteria:
It works as specified and it is secure. A third element is
created to offer the distinction between Agent trust in rela-
tionship from a network, or from the quality of outfacing
services on a machine. The three goals for a robust model
are:

e Security - minimal risk of external compromise
(Host Security Trust)

e Crypto - secure communication (Network Security
Trust)

o Correctness - the OS works as advertised (Functional
Trust)

The OpenBSD Project led by Theo de Raadt, best
achieves the goals and attention to detail required of the
IV project goals. Solutions to the remaining problems

with the original project model that were not addressed
by Client/Server design are now fixed by the choice of
Operating System.

OpenBSD has not had an external vulnerability discov-
ered in the default install in over FOUR YEARS. This pro-
vides minimal headache, even though other OS’s can be
turned into “workstations” to facilitate this same effect.
It is not practical to design an Agent that cannot co-exist
with other network daemons. The Agent is meant to be
used on machines that may be hosting Web, Mail, Name
Service, or other common network services.

Due to meeting the above criteria within the base
OpenBSD distribution, all dependencies from third-party
ports are strictly prohibited. Third party ports are often
code designed to run on a multitude of operating systems,
and consist of user-land applications and libraries. Many
of these libraries, such as Libnet, are abstracted APIs that
can increase ease when attempting to write portable code.
Since portability is not a concern, dependencies will de-
pend on source code solely maintained by the OpenBSD
Development Team.

Last, Software should work as advertised, rather than find-
ing security “silver bullets” that will obfuscate an ex-
ploitation attempt. Software vulnerabilities are errors of
logic in code, just like other software bugs that may have
less critical impact. If a software bug is found, no mat-
ter how small, it should be corrected. This seems like
proper logic, and is the motivation behind the work of the
OpenBSD Development Team.[?]

Declarative versus Procedural

A declarative language involves a programmer telling a
computer WHAT to do, whereas a procedural language
involves a programmer telling a computer HOW to do it.
There is not a single Al technique that cannot be imple-
mented by using a procedural language like C.[?]

e C is an extremely popular language that offers a
structured skeleton without limiting creativity.

o All APIs utilized in project are also written in C

e Al languages tend to carry many ADTs that may be
ill-suited for use for a BSD and RAW socket network
tool with minimal Al properties.

e Linking C with LISP is not desirable due to forc-
ing developers to have two learn both languages
and manage/coordinate what feels like, two seperate
projects.

Threaded Design

A thread is a flow of control within a process. Each thread
represents a minimal amount of state; normally just the
cpu state and a signal mask. All other process state (such
as memory, file descriptors) is shared among all of the
threads in the process.

A threaded model will be developed to ensure concur-
rancy between sensors, expert system and effectors. Each
packet that enters the model through the sensor, can be
“(next-packet) predicted” and injected, while packets con-
tinue to be processed by the sensor.

We will be using OpenBSD pthreads (POSIX 1003.1c).
John Birrell (jo@freebsd.org) wrote the majority of the
user level thread library (-pthread).[?]

Strong Authentication

e In-memory one-way hashes of configuration files
(/etc/iv.conf and /etc/ivd.conf)

e Blowfish crypt hash is stored in read-only root-
owned (perms 0400) /etc/ivd.conf)

Certainly, password authentication (EKS Blowfish)
should be utilized to offer an expensive operation to dis-
courage offline hash cracking, if the Agent node were ever
compromised. However, another important issue is the
notion of IDENTITY. How do we know for sure that an
attacker hasn’t cracked an easy dictionary word?

If an attacker cracks the password, the connection will
be denied unless the hacker has also compromised the
Client host and is sending packets from that IP address.
Obviously, alteration of /etc/iv.conf to point to the Client

address to that of the hacker, will change the hash, and
authentication will be denied (even with legitimate pass-
word).

IP address spoofing and the routing of this traffic is out-
side the scope of this paper. It is assumed that the User
will run the Agents on machines configured with secu-
rity in mind, and that the system security matches that of
the Agent’s posture. The same rules apply for man-in-
the-middle attacks. Lack of security awareness can easily
compromise an OS. OpenBSD ships “secure by default”,
and the Agent implements strategies to prevent both at-
tackers from saturating Agent state and careless user ad-
ministration of 1V configuration files.

Strongly Connected/Encrypted
Cleartext protocols are unacceptable for three reasons:

e Authentication
e Replay Attack

e Connection Hijacking

One would (should) never authenticate across a cleartext
protocol, unless a mechanism like S/Key is used to insti-
tute one-time passwords. Still, even after authentication,
of Telnet (S/Key) (for example), the connection can still
be in danger of being hijacked; for instance, when the at-
tacker is sitting on the same segment as either the Client or
the Agent. Either way, an attacker sitting in promiscuous
mode can do full duplex sniffing of arriving and outgoing
packets to a machine on the same segment.

To protect against password discovery and protocol hi-
jacking, the Blowfish block cipher is thrown at the prob-
lem. Blowfish is a fast unpatented block cipher designed
by Bruce Schneier.[?] It was choosen because it has been
“road-tested” and is embedded in the OpenBSD operating
system.

Configuration

[etc/iv.conf and /etc/ivd.conf exist on both Client and
Agent machines. In order to configure the Agent for op-

eration, these files must be prepared before an IV connec-
tion can take place. The user fills in the IP address(es) of
the Clients that will be allowed to connect to the Agent.
Other data can be placed in comments to decrease likeli-
hood of hash prediction by sniffing incoming Agent con-
nections.

The user then configures /etc/ivd.conf with IP address(es)
of the Agents, the exempted ports from Agent inclusion,
a Blowfish crypt hash (the password), and followed by
Agent metrics for tuning the properties of the Agent (such
as state expiration time or probabilistic metrics for hostile
code)

The idea of metrics is to have an attack func-
tion tree that runs through static attack proce-
dures with a tunable value from 0.00 to 1.00 as
a percentage chance that a particular action will
transpire. There is much to be studied in this
area of the Agent, but the goal is simply to pro-
vide metrics that can allow a user to tweak an
Agent’s posture - more aggressive or passive, to
allow for strategic placement in a dynamic net-
work.

The wuser *“scp’s” (secure copies) the completed
[etc/iv.conf AND /etc/ivd.conf from the Client to
the Agent node through OpenSSH. Now, both the Client
and the Agent have copies of the same configuration files.

A second Agent could be stood up by a revision of
[etc/ivd.conf with possible changes of exempted ports that
match the requirements of that given node (a server farm
may be mirrored boxes all installed from the same im-
age — if this is the case, secure copy /etc/ivd.conf to each
Agent). The Blowfish hash may be changed to provide a
different password for subsequent Agents. Excluded ports
are used to prevent the Agent from answering any packet
destined for the local Agent on said port(s).

[etc/ivd.conf IS ONLY A TEMPLATE FILE
in terms of the CLIENT node.

Once all the files are in place, the Agents need to be
started first, and then the Client. The following depicts
the Agent configuration files, and their interaction with
the Agent program.

e /etc/iv.conf - This is the Client configuration file,
with only a few uses.

e /etc/ivd.conf - This is the Agent configuration file,
with a vast base of usage.
(Note: The Client’s copy of ivd.conf is intended as
template, for creating subsequent Agent ivd.conf’s
that can be secure copied to the Agent node.)

When the Agent is executed, the following actions take
place:

1. /etc/iv[d].conf ownership/permissions are root/0400
or terminate execution.

2. letc/iv.conf serves as a hash reference point and rep-
resents a list of IP addresses that are allowed to con-
nect to the given Agent.

3. List of Agent(s) and exempt ports from /etc/ivd.conf
are assembled into a pcap filter.

4. Listen for incoming connections (kqueue!)

5. On incoming connection, password authenticate and
compare against Blowfish hash

6. If successful, compute one-way hash of /etc/iv.conf
(locally) and challenge the Client.

7. If Client replies with an identical hash, connect the
Client to the Agent... otherwise

8. Go to 4 and repeat.

When the Client is executed, the following actions take
place:

1. /etc/iv[d].conf ownership/permissions are root/0400
or terminate execution.

2. [etc/iv.conf should be identical to each /etc/iv.conf on
the Agent node(s). There is no mechanism slated for
“Client Groups”. If you let your friend Johnny play
with one Agent, then you must let him play with the
Agent System (or collection of Agents).

3. Provide User with Front-End (shell environment and
batch from command line)
The command line batch mode will come into play
when a rule language for packet injection has been
decided.

4. User can perform basic functions such as Agent list-
ings, connects, disconnects, and dumping of statisti-
cal data.

5. Connect to Agent and authenticate when prompted
with password.

6. Receive challenge from Agent, computer one-way
hash of /etc/iv.conf (locally) and respond to the
Agent.

7. If connection fails, the user finds him/herself back in
shell-like environment, ready to connect the Agent
or a different Agent once more.

The password authentication and hash challenge/response
provide assurance that even if the password was discov-
ered, the Client IP address in /etc/iv.conf would have to
match that of the attacker PLUS form a hash that will be
identical to the hash present on the Agent.

Given the tight controls placed on configuration file own-
ership, permissions, Blowfish passwords, and doubling
identical iv.conf files as a hash-based shared secret; a
secret which is not known, but to the superuser of both
the Client and Server combined.... this makes for a nice
configuration file subsystem that indirectly provides addi-
tional function.

Sensors

OpenBSD has both pcap(3) and pthreads(3) as a part of
the core distribution, so these are acceptible dependen-
cies. The pcap(3) interface is a high level interface to
packet capture.

Intrastate Rules are logically AND’d rules. If ALL
THREE rules apply, then the packet is accepted into the
Intrastate Table (Tree) WITH STATE.

| AND | Intrastate Rules |

IR1 Local Agent Destination
IR2 Protocol Match (bitwise)
IR3 | Packet Prediction (Injection State)
IR4 | Packet Prediction (Expert System)

Extrastate Rules are logically OR’d rules. If ANY OF THE
FOUR rules apply, then the packet is accepted into the
Extrastate Table (Tree) WITHOUT STATE.

| OR | Extrastate Rules |
ER1 Local Agent Dest (unknown Protocol)
ER2 | Local Agent Dest (unknown Source IP)
ER3 | Remote Agent Dest (strategic placement)
ER4 Layer 2/3 Broadcast

The term “unknown” refers to the absence of either Proto-
col or Source IP address given the incoming packets des-
tination is that of the Agent. We conduct a bit-wise com-
pare first, to allow a first-packet for a particular protocol
to be accepted by the model with unprecedented speed.

If protocol is found in bitmask, the Intrastate Tree is
searched (conveniently, the tree is sorted by Source IP).
The list is traversed until a match is found on Extrastate.

Rule Optimization

The unoptimized approach would be to iterate down IR
followed by an iteration of ER. If a match occurs, assert it
into either Intrastate or Extrastate storage, otherwise drop
the packet.

The Intrastate rules are special. IR3/4 actually ties into a
portion of the model (the Expert System) that would never
get called until AFTER “a packet” (associated with same
stream) has already made it into the model by meeting
prior Intrastate criteria. In other words, the user would
need to inject a packet FIRST, with a (reversed) Injection
Table (source address/port) match, and the sniffed packet
must have the same protocol-dependent fields that the In-
ference Engine looks up from the Knowledge Base. This
sounds rather confusing, but will make more sense when
the Expert System is discussed later in this paper.

So, if an incoming packet already has to have Intrastate in
order to satisfy IR3/4, how does such a connection stream
become accepted by the Agent? Again, a user-defined

injection must take place FIRST to bring “next-packet(s)”
into the Intrastate tree (table). The design moved to this
method for both functionality and security reasons. By
defining Intrastate criteria as such, the chances attackers
will corrupt the Intrastate Table are negligible.

Functionally, Intrastate is defined as pertaining to re-
sponse from a user-defined action. Therefore if the user
never decides to send a packet, then the Intrastate tree
should contain the empty set (or NULL at the root node).

The security implications of not requiring packet predic-
tion could result in stateful saturation of the Intrastate tree
by an attacker. Without IR3/4, an attacker has the poten-
tial to initiate state generation in Intrastate, which could
have detrimental effects on the performance, not to men-
tion the validity, of Intrastate information. Without IR3,
the only requirements are that the packet is being sent to
the agent on the same protocol and/or port.

Giving Intrastate priority would seem like the logical
thing to do, followed by a Extrastate match, however In-
trastate matches (IR1-4) are too intensive for the many
more packets that will be solely classified as Extrastate
traffic. At the same time, if we reverse this process, there
could be traffic patterns that cause an ER match not to
occur until ER3 or ER4, which involves a tree search.
Given the volume of Extrastate traffic compared to In-
trastate, this could be a bottleneck in ensuring Intrastate
traffic gets analyzed in a timely fashion.

Initialization

The pcap filter applied is based on data pulled from
[etc/ivd.conf. Each Agent address and the local exempted
ports make up the basis of the general packet filter. How-
ever, with such a packet filter employed alone, there is no
further data classification. We have already defined the
function of the agent (handle ’next-packet’ injection), so
a method for segregating traffic responses from the rest of
the indirectly-related traffic.

This additional classification resembles the rules
(IR*/ER*) described above, and are the *second’ filtration
that occurs on traffic that passes the general packet filter.

Sensor Flow (with optimization)

Since /etc/ivd.conf contains the list of all Agent IP ad-
dresses and the local port exemptions, we can construct a
packet capture filter for these basic restrictions.

o Destination IP address == Local Agent
Destination Port != Local Agent exempted ports

e Destination IP address == Remote IP address

Therefore, assembling a basic pcap[?] filter looks similar
to the following:

((ether broadcast) || (ip broadcast) || (ip dst lagent &&
leportl && leport2 && ... && leportN) || (ip dst ragentl
|| ragent2 || ... || ragent3))

If packets are still being sniffed, given the restrictive
packet capture filter, they are valid Intravenous packets
and must be categorized as either Intrastate or Extrastate.
These classifications determine packet importance, as In-
trastate retains complete state and Extrastate does not. To
increase the speed in packet classification, we must op-
timize the IR/ER iterations. The following represents a
logical order for rule optimization:

1. If Broadcast (all zeros/ones), mark as Extrastate
[ER4]. Otherwise, go to step 2.

2. If packet is destined for remote Agent, mark as Ex-
trastate [ER3]. Otherwise, must be a packet to local
Agent. [IR1]

3. A bitwise compare of u_short proto (protocol bit-
mask). If zero, mark as Extrastate [ER2]. Otherwise
we have a match, and proceed to step 4 [IR2].

4. Here, we have ruled out all Extrastate possibilities.
The Injection Engine State Table must be analyzed
to discern if the packet is in response to a prior
injected packet. This is checked by reversing the
source/destination IP addresses and ports (if appli-
cable) and then comparing to Injection State [IR3].

5. If match occurs, send packet to Expert System to
match protocol dependent relative value changes for
“next-packet’ injection [IR4].

Expert System

Expert Systems are primarily of interest due to conve-
nience and availability. They never have to eat, sleep, take
holidays, and they always operate at peak performance.
They represent the greatest success in Al for commercial
systems, due to being generally useful and most impor-
tantly unbiased, as it lacks personality. A comparable
human expert would have a personality that may conflict
with the user. Recommendations from a biased expert,
such as religious wars between unices, editors, crypto-
graphic algorithms, become seemingly less important rec-
ommendations if the user does not agree. Multiple agents
equal multiple experts that will always adhere to the same
logic. This creates a cohesive system that can be trusted,
where the goal for the Intravenous Expert System is to
adhere to TCP/IP RFC documentation.

Every Expert System consists of two major components:

e Knowledge Base - The Knowledge Base represents
the solution set.

e Inference Engine - The Inference Engine is used on
the Knowledge Base to search for a solution.

Knowledge Bases

Intravenous has three (3) Knowledge Bases that each con-
tain unique information. This information can be divided
up into areas of connection integrity, network-based at-
tack and network/host-based defense. Much like a dic-
tionary, the solutions to all defined lookups are contained
within.

TCP/IP Knowledge Base

The TCP/IP Knowledge Base contains the specifics for
discerning what the ’next-injected’ packet needs to con-
tain in order to respond to an Intrastate packet. For ex-
ample, if the user sends a TCP SYN to a remote host’s
port 80 (perhaps a client -> web server connection), the
TCP/IP Knowledge Base contains the information to re-
spond to the web server’s TCP SYN/ACK that will imme-
diately follow.

For example,

e User-defined injection occurs from Agent A to arbi-
trary Server S on destination port 80.

e Srespondsto Awitha TCP SYN/ACK. (IR1and IR2
pass, injected TCP has already populated protocol,
and packet is being sent to the Agent)

e A sends Injection State packet match to TCP/IP In-
ference Engine for lookup in the TCP/IP Knowledge
Base. A temporary packet is computed with the re-
sults from the TCP/IP Knowledge Base. If this is
a valid packet, the computed temporary packet will
match S’s SYN/ACK packet. (This indicates a legit-
imate response to User-defined injection, and not a
spoofed packet. If it’s a spoof, drop the packet!)

e The next-injected packet is computed against the re-
sults from the TCP/IP Knowledge Base and is imme-
diately sent to the Injection Engine for packet injec-
tion.

Essentially, the Expert System is used twice per
Response/Next-Injection connection pair. The Agent ver-
ifies that the incoming packet is a “predicted” packet (to
combat IP spoofing), which occurs by computing the rela-
tive value changes of the current incoming packet with the
prior injected packet. If there is a match, the Agent then
computes the relative value changes of the next-injected
packet with the current incoming packet and immediately
injects. This cycle continues until packet prediction can
no longer occur; with hope that the cycle stops because of
a completed connection.

Attack Knowledge Base

The Attack Knowledge Base contains high level defini-
tions for network-based attack. A high-level attack is de-
fined as a list of packet combinations required to perform
a particular network attack. For example, assigning the
injected packet combinations that make up a “smurf” at-
tack or an “arpspoof”.

Currently, these methods are function stubs. They will re-
quire an attack rules language for defining stateful pack-
ets that will be used for high-level attack. The goal is to

have an external flat file that can be shared by the Inter-
net community for addition and modification of high-level
network-based attack.

Defense Knowledge Base

The Defense Knowledge Base contains high level def-
initions for HOST-BASED defense. This component is
largely dependent on the Intravenous code-base under-
standing the operating system that it is designed for. Cur-
rently, the focus of host-based defense has centered on ac-
cess to dynamic changes made to the OpenBSD PF packet
filter[?], along with access to the host’s routing tables.

Currently, these methods are function stubs and are not
employed in the draft agent. The Defense Knowledge
Base is listed in the general specification to define its
function and is present for completeness. The PF (based
on IPF rules) rule parser will need to be ripped from PF
and placed into the agent, so that the User can identify
dynamic changes with rules that he/she is already famil-
iar with.

Inference Engines

Intravenous has three (3) inference engines that match
their respective knowledge bases. Again, using a dictio-
nary as an example, a Knowledge Base alone, is like own-
ing a dictionary, but not knowing how to look information
up. The inference engine is used in examining a packet
for knowledge base lookup. The goal of the inference en-
gine is to determine a packet match in as few moves as
possible.

There are two primary classifications of an Inference En-
gine:

e deterministic - predict with certainty

e probabilistic - predict with uncertainty
A deterministic inference engine makes predictions that

are certain, or absolute. Without question, if bytes 13
and 14 of an ethernet header (the protocol field) resemble

0x0806, the protocol is ARP (Address Resolution Pro-
tocol). The inference engine can immediately probe the
knowledge base for ARP fields and there is no clock cy-
cles wasted on attempting analysis with other protocol
headers.

Certainty is defined by RFC. If a network stack is vio-
lating RFC, the inference engine will automatically be
inaccurate. There will be no face time spent on discov-
ering OS anamolies due to RFC non-compliance - this
is counter-productive and will only create complexity on
all RFC compliant stacks, forcing the performance to de-
grade greatly.

There are three ways to construct an inference engine.

o forward-chaining
e backward-chaining

e rule-value

Forward-chaining represents a data-driven search that
starts with some information and attempts to define an
object based on this information. If not enough infor-
mation is present, the engine requests more information.
Backward-chaining is the opposite of this. It starts with
an object and tries to verify this object with information.
Neither forward-chaining or backward-chaining create an
optimal fit given the information provided.

The Rule-Value method is theoretically superior to both
forward and backward-chaining, but it can be the most
difficult to implement. The Rule-Value method is simply
an improved version of backward chaining. The goal of
the Rule-Value method is to remove the most uncertainty
from the system for each check it makes. This is the opti-
mal method, as not all fields need to be exhausted prior to
discovering the hard-fast rule for "next-packet’ injection.

TCP/IP Inference Engine

The TCP/IP Inference Engine is a deterministic engine.
There is always some portion of the header that uniquely
identifies the packet to a particular major and minor proto-
col. The major protocol is defined as the overall protocol

10

categorization. Using the above ARP example, detect-
ing 0x0806, defines the major protocol with certainty. By
definition, the minor protocol would fall under the major
protocol’s dependent fields. Therefore, the minor proto-
col for ARP would be defined by the ARP opcode (bytes
7-8 of the ARP header) - 0x0001 for ARP REQUEST, and
0x0002 for ARP REPLY.

Using this major/minor protocol approach, we create a
“rule-value” engine.

Attack Inference Engine

The Attack Inference Engine is a probabilistic engine.
There is no real way to discern with certainty that a RE-
MOTE agent is being attacked, due to the local agent con-
taining minimal state of the remote agent(s). For this
reason, the engine couples with a configuration metric
to determine the probability that a particular attack will
be placed on the network wire, given data indicative of
network-based attack.

The automated component is planned for preventative
measures ONLY. There will be no attacks generated hap-
hazardly. The primary reason for establishing the At-
tack KB/IE pair is to provide a mechanism for user-
defined attack. The attack mechanism solely brings cur-
rent methods of network attack (such as “smurf” and
many other network saturation attacks) in-house, working
on a packet-by-packet basis (as described in the Knowl-
edge Base section).

Defense Inference Engine

The Defense Inference Engine is a probabilistic engine.
There is no real way to discern with certainty that a LO-
CAL agent is being attacked, due to the variety of ways
to affect a node in the TCP/IP environment. A simple
spoofed ARP reply to the upstream router, from an at-
tacker sitting on the same LAN as the local agent can dis-
connect current network traffic.

There are also a variety of both critical and non-critical
defensive counter-measures. Criticality is defined as re-
stricting traffic flow through the sensors. An example of a
non-critical defensive manuever could be an ARP poison

of the legitimate MAC address that the sensor is collect-
ing traffic on. Of course, this is the recommended coun-
termeasure for dealing with attackers using ARP, but the
countermeasure also does not affect the flow of traffic - in
fact, if anything it re-establishes connectivity and traffic
flow that may have been disconnected in an attack.

In contrast, a critical defensive manuever would resemble
the closure of firewall rules and/or routes. Either method
can impair the sensors traffic flow. The primary concern
of critical defensive mechanisms, is that they shall never
be performed on Intrastate connection pairs. By defini-
tion, Intrastate requires that the User initiates the connec-
tion. The design also considers the potential of attackers
corrupting the Intrastate tables. Therefore, with these de-
sign constraints, there should never be a need to restrict
traffic flow on Intrastate traffic - this includes the network
interfaces that said Intrastate traffic is passing in and out
of.

Although both the Attack and Defense Inference Engines
are in their infancy, they are also considered optional en-
gines and are not primary operations that affect the goals
of Intravenous.

Injection Engine

The final piece of the model consists of a packet injection
engine. It contains two methods of interface: user-defined
and automated injection. The Agent institutes STATE-
FUL PACKET INJECTION. This is a very important con-
cept in both the functionality and security of the model.
Without keeping complete state of an injected packet,
there is no way for the response to pass IR4 (packet pre-
diction through Expert System). Nothing stops an attacker
from crafting a SYN/ACK packet that happens to occur
after a User-defined SYN packet.

User-defined Injection

Although the Intelligent Agent is designed so that it can
be automated, it is also designed with the notion that a
User will provide tasks for the Agent. Without an in-
jected packet, there is no Intrastate traffic, EVER. It is not

11

the goal of this project to invent arbitrary packet injec-
tions and maintain a connection across an assertion that is
completely random.

At Toorcon, the Intravenous talk centered around the no-
tion of automating injections for the purposes of acquir-
ing missing state information. Of course, this makes a
broad assumption that IP spoofing will never match wits
with the Agent model. It also makes the assumption that
state is kept on ALL packets (Intrastate AND Extrastate).
Through experimentation, it was found that the Agent
tended to get curious too often, and saturated Intrastate
with useless information, as well as created an Extrastate
so large that it was time-consuming to parse even in O(log
n) time. The model was tuned down in function with secu-
rity implications kept in mind throughout the entire pro-
cess.

The new rules that maintain a greater sanity among the
data structures follows on the notion that it is impossible
to generate Intrastate without the User interfacing with
the Agent. Since minimal state (addresses/ports only) is
kept on Extrastate traffic, the User can obtain enough in-
formation on Extrastate connections (such as some IP ad-
dress portscanning a remote agent) to assert as a human
being, that an injection to the suspect source IP address
may warrant bringing the IP into Intrastate, which will
maintain complete state. This information can be used for
fingerprinting, or network-based attack. As in order for
network-based attack to occur, the packet will inevitably
be brought into Intrastate as a result of automated packet
injection.

The Client is not the component with the injection ca-
pability. In fact, the client is simply a front-end to con-
necting to the Agent, and the Agent is the one with the
packet crafting capabililties. Once a connection is stood
up between the Client and the Agent, the Client can issue
packet injection requests through the Agent. Therefore,
the IP address of the Client is hidden from IDS/Network
monitors, when injecting.

Since the Agent becomes exposed when performing
network-based attack, remote Agents can track incoming
packets destined for the Local Agent (via remote Agent
Extrastate Tables). However, the only complete state kept
on network-based attack is on the packet originator - as
this will match the IR rules.

Similar to Nemesis, Intravenous allows for complete
crafting of protocol headers with payload from a file de-
scriptor.

Automated Injection

Automated injection ONLY occurs when a User-defined
injection precedes it. Hence, a User-defined injection
brings a connection pair into Intrastate; once in Intrastate,
further injection is handled via automation. The following
automated injections occur from results looked up from
the TCP/IP Knowledge Base. The injection component,
is refered to as an Effector. An Effector acts on the En-
vironment (in this case, Intrastate) as it perceives traffic
through the Sensors.

The automated injection component works identical to
user-defined injection, with the exception that requests are
handled by the Agent from what is learned in the Expert
System, and not by User interest.

Conclusion

This whitepaper is meant to serve as an overview of
the Intravenous model. The theory as tested (nemesis
wrapped with test code) has proved to be a worthwhile
experiment. It demonstrates the power of Al structure in
typical network code to bring elements of protocol con-
nectivity to methods of TCP/IP that were never intended.

The impact of raw sockets is rather obvious - COM-
PLETE control of TCP/IP headers. It has been the found-
stone of network-based attack, since a majority of net-
work stack weaknesses lie in the arena of the unexpected.
Using standard networking (eg. BSD sockets) is quite
easy to control because there are accepted standards and
functions that have been used for decades to establish
connection-oriented client/server design.

Intravenous is a study of emulating standard networking
through raw sockets, granting the Agent complete control
of packet injection coupled with intelligence in protocol
decoding with emphasis placed on maintaining connec-
tion integrity with respect to time.

12

Future whitepapers will break down each component into
explicit detail. For now, this specification provides an
overview of the project goals and design criteria to estab-
lish an understanding of scope and the mechanisms that
will be fleshed out with C source code. Stay tuned to my
website htt p: // www. packet ni nj a. net/ for document
revisions.

References

[1] T. De Raadt, “OpenBSD”, The OpenBSD Project,
1995-2001, Available from http://www.openbsd.org/.

[2] D. Hartmeier, “OpenBSD Packet Filter”,
The OpenBSD Project, 2001, Available from

http://www.openbsd.org/.

C. Provenzano, J. Birrell, “POSIX Threads”,
The FreeBSD Project, 1995-98, Awvailable from
http://www.freebsd.org/.

[3]

[4] V. Jacobson, C. Leres and S. McCanne, “libpcap”,
Lawrence Berkeley National Laboratory, Berkeley,

California, 1993-1997.

[5] H. Schildt, Artificial Intelligence Using C, McGraw-

Hill, Berkeley, California, 1987, pp. 13-15.

B. Schneier, Blowfish
graphic Cipher, 1994, Available
http://www.counterpane.com/blowfish.html.

[6] Crypto-

from

