
Core War Frequently Asked Questions
(rec.games.corewar FAQ)
These are the Frequently Asked Questions (and answers) from the Usenet newsgroup
rec.games.corewar. A plain text version of this document is posted every two weeks. The latest hyper-
text version is available at http://homepages.paradise.net.nz/~anton/cw/corewar-faq.html and the latest
plain text version is available at http://homepages.paradise.net.nz/~anton/cw/corewar-faq.txt.

This document is currently being maintained by Anton Marsden (anton@paradise.net.nz).

Last modified: Tue Feb 29 19:42:21 NZDT 2000

To Do
Change "silk" definition - it is possible to write a silk in ICWS ’88. Get some example code
Add the new No-PSpace ’94 hill location
Make question 17 easier to understand. Add a state diagram?
Add info about infinite hills, related games (C-Robots, Tierra?, ...)
New question: How do I know if my warrior is any good? Refer to beginners’ benchmarks, etc.
Add a Who’s Who list?
Would very much like someone to compile a collection of the "revolutionary" warriors so that
beginners can see how the game has developed over the years. Mail me if interested.

What’s New
Updated silk definition.
Minor URL changes.
Added the online location of Dewdney’s articles
Changed ftp://www.koth.org/corewar/ to ftp://www.koth.org/pub/corewar/
Changed primary location of FAQ (again!)
Changed Philip Kendall’s home page address.
Updated list server information

Table of Contents
1. What is Core War
2. Is it "Core War" or "Core Wars"?
3. Where can I find more information about Core War?
4. Core War has changed since Dewdney’s articles. Where do I get a copy of the current instruction

set?
5. What is ICWS’94? Which simulators support ICWS’94?
6. What is the ICWS?
7. What is Core Warrior?
8. Where are the Core War archives?
9. Where can I find a Core War system for ...?

1

ftp://rtfm.mit.edu/pub/usenet/news.answers/games/corewar-faq
http://homepages.paradise.net.nz/~anton/cw/corewar-faq.txt
http://homepages.paradise.net.nz/~anton/cw/

10. Where can I find warrior code?
11. I do not have FTP. How do I get all this great stuff?
12. I do not have access to Usenet. How do I post and receive news?
13. Are there any Core War related WWW sites?
14. What is KotH? How do I enter?
15. Is it DAT 0, 0 or DAT #0, #0? How do I compare to core?
16. How does SLT (Skip if Less Than) work?
17. What is the difference between in-register and in-memory evaluation?
18. What is P-space?
19. What does "Missing ;assert .." in my message from KotH mean?
20. How should I format my code?
21. Are there any other Core War related resources I should know about?
22. What does (expression or term of your choice) mean?
23. Other questions?

1. What is Core War?
Core War is a game played by two or more programs (and vicariously by their authors) written in an
assembly language called Redcode and run in a virtual computer called MARS (for Memory Array
Redcode Simulator). The object of the game is to cause all processes of the opposing program to
terminate, leaving your program in sole posession of the machine.

There are Core War systems available for most computer platforms. Redcode has been standardised by
the ICWS, and is therefore transportable between all standard Core War systems.

The system in which the programs run is quite simple. The core (the memory of the simulated
computer) is a continuous array of instructions, empty except for the competing programs. The core
wraps around, so that after the last instruction comes the first one again.

There are no absolute addresses in Core War. That is, the address 0 doesn’t mean the first instruction
in the memory, but the instruction that contains the address 0. The next instruction is 1, and the previ-
ous one obviously -1 . However, all numbers are treated as positive, and are in the range 0 to CORE-
SIZE -1 where CORESIZE is the amount of memory locations in the core - this means that -1 would
be treated as CORESIZE -1 in any arithmetic operations, eg. 3218 + 7856 = (3218 + 7856)
mod CORESIZE . Many people get confused by this, and it is particularly important when using the
SLT instruction. Note that the source code of a program can still contain negative numbers, but if you
start using instructions like DIV #-2, #5 it is important to know what effect they will have when
executed.

The basic unit of memory in Core War is one instruction. Each Redcode instruction contains three
parts:

the opcode
the source address (a.k.a. the A-field)
the destination address (a.k.a. the B-field)

The execution of the programs is equally simple. The MARS executes one instruction at a time, and
then proceeds to the next one in the memory, unless the instruction explicitly tells it to jump to another
address. If there is more than one program running, (as is usual) the programs execute alternately, one

2

instruction at a time. The execution of each instruction takes the same time, one cycle, whether it is
MOV, DIV or even DAT (which kills the process).

Each program may have several processes running. These processes are stored in a task queue. When
it is the program’s turn to execute an instruction it dequeues a process and executes the corresponding
instruction. Processes that are not killed during the execution of the instruction are put back into the
task queue. Processes created by a SPL instruction are added to the task queue after the creating
process is put back into the task queue.

[ToC]

2. Is it "Core War" or "Core Wars"?
Both terms are used. Early references were to Core War. Later references seem to use Core Wars. I
prefer "Core War" to refer to the game in general, "core wars" to refer to more than one specific battle.

[ToC]

3. Where can I find more information about Core War?
Core War was first described in the Core War Guidelines of March, 1984 by D. G. Jones and A. K.
Dewdney of the Department of Computer Science at The University of Western Ontario (Canada).
Dewdney wrote several "Computer Recreations" articles in Scientific American which discussed Core
War, starting with the May 1984 article. Those articles are contained in two anthologies:

Author Title Published ISBN
Library of

Congress Call
Number

Dewdney,
A. K.

The Armchair
Universe: An Explo-
ration of Computer
Worlds

New York: W.
H. Freeman ©
1988

0-7167-1939-8
QA76.6 .D517
1988

Dewdney,
A. K.

The Magic Machine: A
Handbook of Computer
Sorcery

New York: W.
H. Freeman ©
1990

0-7167-2125-2 (Hard-
cover), 0-7167-2144-9
(Paperback)

QA76.6 .D5173
1990

A.K. Dewdney’s articles are still the most readable introduction to Core War, even though the
Redcode dialect described in there is no longer current. You can view a scanned version of the articles
at http://www.koth.org/info/sciam/. For those who are interested, Dewdney has a home page at
http://www.csd.uwo.ca/faculty/akd/.

[ToC]

3

http://www.koth.org/info/sciam/
http://www.csd.uwo.ca/faculty/akd/

4. Core War has changed since Dewdney’s articles. Where do
I get a copy of the current instruction set?
A draft of the official standard (ICWS’88) is available as ftp://www.koth.org/pub/corewar/docu-
ments/standards/redcode-icws-88.Z. This document is formatted awkwardly and contains ambiguous
statements. For a more approachable intro to Redcode, take a look at Mark Durham’s tutorials,
ftp://www.koth.org/pub/corewar/documents/tutorial.1.Z and ftp://www.koth.org/pub/corewar/docu-
ments/tutorial.2.Z.

Steven Morrell has prepared a more practically oriented Redcode tutorial that discusses different
warrior classes with lots of example code. This and various other tutorials can be found at
http://www.koth.org/info.html.

Even though ICWS’88 is still the "offi cial" standard, you will find that most people are playing by
ICWS’94 draft rules and extensions.

[ToC]

5. What is ICWS’94? Which simulators support ICWS’94?
There is an ongoing discussion about future enhancements to the Redcode language. A proposed new
standard, dubbed ICWS’94, is currently being evaluated. A major change is the addition of "instruc-
tion modifiers" that allow instructions to modify A-field, B-field or both. Also new is a new address-
ing modes and unrestricted opcode and addressing mode combination ("no illegal instructions").
ICWS’94 is backwards compatible; i.e. ICWS’88 warriors will run correctly on an ICWS’94 system.
Take a look at the ICWS’94 draft at ftp://www.koth.org/pub/corewar/documents/icws94.0202.Z for
more information. There is a HTML version of this document available at
http://www.koth.org/info/icws94.html. You can try out the new standard by submitting warriors to the
’94 hills of the KotH servers. Two corewar systems currently support ICWS’94, pMARS (many plat-
forms) and Redcoder (Mac), both available at ftp://www.koth.org/pub/corewar. Note that Redcoder
only supports a subset of ICWS’94.

[ToC]

6. What is the ICWS?
About one year after Core War first appeared in Scientific American, the "International Core War
Society" (ICWS) was established. Since that time, the ICWS has been responsible for the creation and
maintenance of Core War standards and the running of Core War tournaments. There have been six
annual tournaments and two standards (ICWS’86 and ICWS’88). The ICWS is no longer active.

[ToC]

4

ftp://www.koth.org/pub/corewar/documents/standards/redcode-icws-88.Z
ftp://www.koth.org/pub/corewar/documents/standards/redcode-icws-88.Z
ftp://www.koth.org/pub/corewar/documents/tutorial.1.Z
ftp://www.koth.org/pub/corewar/documents/tutorial.2.Z
ftp://www.koth.org/pub/corewar/documents/tutorial.2.Z
http://www.koth.org/info.html
ftp://www.koth.org/pub/corewar/documents/icws94.0202.Z
http://www.koth.org/info/icws94.html
http://www.koth.org/pmars.html
ftp://www.koth.org/pub/corewar

7. What is Core Warrior?
Following in the tradition of the Core War News Letter, Push Off, and The 94 Warrior, Core Warrior
is a newsletter about strategies and current standings in Core War. Started in October 1995, back
issues of Core Warrior (and the other newsletters) are available at
http://para.inria.fr/~doligez/corewar/. There is also a Core Warrior index page at
http://www.kendalls.demon.co.uk/pak21/corewar/warrior.html which has a summary of the contents of
each issue of Core Warrior. Many of the earlier issues contain useful information for beginners.

[ToC]

8. Where are the Core War archives?
Many documents such as the guidelines and the ICWS standards along with previous tournament
Redcode entries and complete Core War systems are available via anonymous ftp from
ftp://ftp.csua.berkeley.edu/pub/corewar. Also, most of past rec.games.corewar postings (including
Redcode source listings) are archived there. Jon Blow (blojo@csua.berkeley.edu) is the archive admin-
istrator. When uploading to /pub/corewar/incoming, ask Jon to move your upload to the appropriate
directory and announce it on the net.

This site is mirrored at:

ftp://www.koth.org/pub/corewar/
ftp://ftp.inria.fr/INRIA/Projects/para/doligez/cw/mirror

The plain text version of this FAQ is automatically archived by news.answers (but this version is prob-
ably out-of-date).

[ToC]

9. Where can I find a Core War system for . . . ?
Core War systems are available via anonymous FTP from www.koth.org in the corewar/systems direc-
tory. Currently, there are UNIX, IBM PC-compatible, Macintosh, and Amiga Core War systems avail-
able there. It is a good idea to check ftp://www.koth.org/pub/corewar/incoming for program updates
first.

CAUTION! There are many, many Core War systems available which are NOT ICWS’88 (or even
ICWS’86) compatible available at various archive sites other than www.koth.org. Generally, the older
the program - the less likely it will be ICWS compatible.

If you are looking for an ICWS’94 simulator, get pMARS, which is available for many platforms and
can be downloaded from:

ftp://ftp.csua.berkeley.edu/pub/corewar (original site)
ftp://www.koth.org/corewar (koth.org mirror)
ftp://ftp.inria.fr/INRIA/Projects/para/doligez/cw/mirror (Planar mirror)
http://www.nc5.infi.net/~wtnewton/corewar/ (Terry Newton)
ftp://members.aol.com/ofechner/corewar (Fechter)

5

http://para.inria.fr/~doligez/corewar/
http://www.kendalls.demon.co.uk/pak21/corewar/warrior.html
ftp://ftp.csua.berkeley.edu/pub/corewar
ftp://www.koth.org/pub/corewar/
ftp://ftp.inria.fr/INRIA/Projects/para/doligez/cw/mirror
ftp://rtfm.mit.edu/pub/usenet/news.answers/games/corewar-faq
ftp://www.koth.org/pub/corewar/systems
ftp://www.koth.org/pub/corewar/incoming
http://www.koth.org/pmars.html
ftp://ftp.csua.berkeley.edu/pub/corewar
ftp://www.koth.org/corewar
ftp://ftp.inria.fr/INRIA/Projects/para/doligez/cw/mirror
http://www.nc5.infi.net/~wtnewton/corewar/
ftp://members.aol.com/ofechner/corewar

Notes:

If you have trouble running pMARS with a graphical display under Win95 then check out
http://www.koth.org/pmars.html which should have a pointer to the latest compilation of pMARS
for this environment.
RPMs for the Alpha, PowerPC, Sparc and i386 can be found at
ftp://ftp.inria.fr/INRIA/Projects/para/doligez/cw/pmars-rpm/

Reviews of Core War systems would be greatly appreciated in the newsgroup and in the newsletter.

Below is a not necessarily complete or up-to-date list of what’s available at www.koth.org:

6

http://www.koth.org/pmars.html
ftp://ftp.inria.fr/INRIA/Projects/para/doligez/cw/pmars-rpm/

MADgic41.lzh corewar for the Amiga, v4.1

MAD4041.lzh older version?

MAD50B.lha corewar for the Amiga, beta version 5.0

Redcoder-21.hqx corewar for the Mac, supports ICWS’88 and ’94 (without extensions)

core-11.hqx corewar for the Mac

core-wars-simulator.hqx same as core-11.hqx?

corewar_unix_x11.tar.Z
corewar for UNIX/X-windows, ICWS’86 but not ICWS’88 compati-
ble

koth31.tar.Z
corewar for UNIX/X-windows. This program ran the former KotH
server at intel.com

koth.shar.Z older version

kothpc.zip port of older version of KotH to the PC

deluxe20c.tar.Z corewar for UNIX (broken X-windows or curses) and PC

mars.tar.Z corewar for UNIX, likely not ICWS’88 compatible

icons.zip corewar icons for MS-Windows

macrored.zip a redcode macro-preprocessor (PC)

c88v49.zip PC corewar, textmode display

mars88.zip PC corewar, graphics mode display

corwp302.zip PC corewar, textmode display, slowish

mercury2.zip PC corewar written in assembly, fast!

mtourn11.zip tournament scheduler for mercury (req. 4DOS)

pmars08s.zip
portable system, ICWS’88 and ’94, runs on UNIX, PC, Mac, Amiga.
C source archive

pmars08s.tar.Z same as above

pmars08.zip PC executables with graphics display, req 386+

macpmars02.sit.hqx pMARS executable for Mac (port of version 0.2) buggy, no display

MacpMARS1.99a.cpt.hqx port of v0.8 for the Mac, with display and debugger

MacpMARS1.0s.cpt.hqx C source (MPW, ThinkC) for Mac frontend

pvms08.zip pMARS v0.8 for VMS build files/help (req. pmars08s.zip)

ApMARS03.lha pMARS executable for Amiga (port of version 0.3.1)

wincor11.zip MS-Windows system, shareware ($15)

7

ftp://www.koth.org/pub/corewar/systems/88/MADgic41.lzh
ftp://www.koth.org/pub/corewar/systems/88/MADgic4041.lzh
ftp://www.koth.org/pub/corewar/systems/88/MAD50B.lha
ftp://www.koth.org/pub/corewar/systems/94/Redcoder-21.hqx
ftp://www.koth.org/pub/corewar/systems/core-11.hqx
ftp://www.koth.org/pub/corewar/systems/core-wars-simulator.hqx
ftp://www.koth.org/pub/corewar/systems/corewar_unix_x11.tar.Z
ftp://www.koth.org/pub/corewar/systems/88/koth31.tar.Z
ftp://www.koth.org/pub/corewar/systems/88/koth.shar.Z
ftp://www.koth.org/pub/corewar/systems/88/kothpc.zip
ftp://www.koth.org/pub/corewar/systems/88/deluxe20c.tar.Z
ftp://www.koth.org/pub/corewar/systems/mars.tar.Z
ftp://www.koth.org/pub/corewar/systems/icons.zip
ftp://www.koth.org/pub/corewar/tools/macrored.zip
ftp://www.koth.org/pub/corewar/systems/88/c88v49.zip
ftp://www.koth.org/pub/corewar/systems/88/mars88.zip
ftp://www.koth.org/pub/corewar/systems/88/corwp302.zip
ftp://www.koth.org/pub/corewar/systems/88/mercury2.zip
ftp://www.koth.org/pub/corewar/systems/mtourn11.zip
ftp://www.koth.org/pub/corewar/systems/94/pmars08s.zip
ftp://www.koth.org/pub/corewar/systems/94/pmars08s.tar.Z
ftp://www.koth.org/pub/corewar/systems/94/pmars08.zip
ftp://www.koth.org/pub/corewar/systems/macpmars02.hqx
ftp://www.koth.org/pub/corewar/systems/94/MacpMARS1.99a.cpt.hqx
ftp://www.koth.org/pub/corewar/systems/94/MacpMARS1.0s.cpt.hqx
ftp://www.koth.org/pub/corewar/incoming/pvms08.zip
ftp://www.koth.org/pub/corewar/systems/94/ApMARS03.lha
ftp://www.koth.org/pub/corewar/systems/88/wincor11.zip

[ToC]

10. Where can I find warrior code?
To learn the game, it is a good idea to study previously posted warrior code. The FTP archives have
code in the ftp://www.koth.org/pub/corewar/redcode directory. A clearly organized on-line warrior
collection is available at the Core War web sites (see below).

[ToC]

11. I do not have FTP. How do I get all this great stuff?
There is an FTP email server at bitftp@pucc.princeton.edu. Send email with a subject and body text of
"help" (without the quotes) for more information on its usage. Note that many FTP email gateways are
shutting down due to abuse. To get a current list of FTP email servers, look at the Accessing the Inter-
net by E-mail FAQ posted to news.answers. If you don’t have access to Usenet, you can retrieve this
FAQ one of the following ways:

Send mail to mail-server@rtfm.mit.edu with the body containing "send
usenet/news.answers/internet-services/access-via-email".
Send mail to mailbase@mailbase.ac.uk with the body containing "send lis-iis
e-access-inet.txt".

[ToC]

12. I do not have access to Usenet. How do I post and receive
news?
To receive rec.games.corewar articles by email, join the COREWAR-L list run on the Koth.Org list
processor. To join, send the message

SUB COREWAR-L FirstName LastName

to listproc@koth.org. You can send mail to corewar-l@koth.org to post even if you are not a member
of the list. Responsible for the listserver is Scott J. Ellentuch (ttsg@ttsg.com).

Servers that allow you to post (but not receive) articles are available. Refer to the Accessing the Inter-
net by E-Mail FAQ for more information.

[ToC]

13. Are there any Core War related WWW sites?
You bet. Each of the two KotH sites sport a world-wide web server. Stormking’s Core War page is
http://www.koth.org; pizza’s is http://www.ecst.csuchico.edu/~pizza/koth . Damien Doligez (a.k.a.
Planar) has a web page that features convenient access to regular newsletters (Push Off, The ’94

8

ftp://www.koth.org/pub/corewar/redcode
http://www.koth.org/
http://www.ecst.csuchico.edu/~pizza/koth

Warrior, Core Warrior) and a well organized library of warriors: http://para.inria.fr/~doligez/corewar/.
Convenient for U.S. users, this site is also mirrored at koth.org.

[ToC]

14. What is KotH? How do I enter?
King Of The Hill (KotH) is an ongoing Core War tournament available to anyone with email. You
enter by submitting via email a Redcode program (warrior) with special comment lines. You will
receive a reply indicating how well your program did against the current top programs "on the hill".

There are two styles of KotH tournaments, "classical" and "multi-warrior". The "classical" KotH is a
one-on-one tournament, that is your warrior will play 100 battles against each of the 20 other programs
currently on the Hill. You receive 3 points for each win and 1 point for each tie. (The existing
programs do not replay each other, but their previous battles are recalled.) All scores are updated to
reflect your battles and all 21 programs are ranked from high to low. If you are number 21 you are
pushed off the Hill, if you are higher than 21 someone else is pushed off.

In "multi-warrior" KotH, all warriors on the hill fight each other at the same time. Score calculation is
a bit more complex than for the one-on-one tournament. Briefly, points are awarded based on how
many warriors survive until the end of a round. A warrior that survives by itself gets more points than
a warrior that survives together with other warriors. Points are calculated from the formula
(W*W-1)/S, where W is the total number of warriors and S the number of surviving warriors. The
pMARS documentation has more information on multi-warrior scoring.

The idea for an email-based Core War server came from David Lee. The original KotH was developed
and run by William Shubert at Intel starting in 1991, and discontinued after almost three years of
service. Currently, KotHs based on Bill’s UNIX scripts but offering a wider variety of hills are are
running at two sites: koth@koth.org is maintained by Scott J. Ellentuch (tuc@ttsg.com) and
pizza@ecst.csuchico.edu by Thomas H. Davies (sd@ecst.csuchico.edu). Up until May ’95, the two
sites provided overlapping services, i.e. the some of the hill types were offered by both "pizza" and
"stormking". To conserve resources, the different hill types are now divided up among the sites. The
way you submit warriors to both KotHs is pretty much the same. Therefore, the entry rules described
below apply to both "pizza" and "stormking" unless otherwise noted.

Entry Rules for King of the Hill Corewar

Write a corewar program. KotH is fully ICWS ’94 compatible, EXCEPT that a comma (",") is
required between two arguments.
Put a line starting with ";redcode" (or ";redcode-94", etc., see below) at the top of your
program. This MUST be the first line. Anything before it will be lost. If you wish to receive mail
on every new entrant, use ";redcode verbose". Otherwise you will only receive mail if a
challenger makes it onto the hill. Use ";redcode quiet" if you wish to receive mail only
when you get shoved off the hill.
Additionally, adding ";name <program name>" and ";author <your name>" will be
helpful in the performance reports. Do NOT have a line beginning with ";address" in your
code; this will confuse the mail daemon and you won’t get mail back. Using ";name" is manda-
tory on the Pizza hills.
In addition, it would be nice if you have lines beginning with ";strategy" that describe the
algorithm you use.

9

http://para.inria.fr/~doligez/corewar/
http://www.koth.org/
http://www.koth.org/pmars.html

There are currently seven separate hills you can select by starting your program with
;redcode-94, ;redcode-b, ;redcode-lp, ;redcode-x, ;redcode,
;redcode-94x or ;redcode-94m. The former four run at "pizza", the latter three at
"stormking". More information on these hills is listed below.
Mail this file to koth@koth.org or pizza@ecst.csuchico.edu. "Pizza" requires a subject of "koth"
(use the -s flag on most mailers).
Within a few minutes you should get mail back telling you whether your program assembled
correctly or not. If it did assemble correctly, sit back and wait; if not, make the change required
and re-submit.
In an hour or so you should get more mail telling you how your program performed against the
current top 20 (or 10) programs. If no news arrives during that time, don’t worry; entries are put in a
queue and run through the tournament one at a time. A backlog may develop. Be patient.

If your program makes it onto the hill, you will get mail every time a new program makes it onto the
hill. If this is too much mail, you can use ";redcode[-??] quiet" when you first mail in your
program; then you will only get mail when you make it on the top 25 list or when you are knocked off.
Using ";redcode[-??] verbose" will give you even more mail; here you get mail every time a
new challenger arrives, even if they don’t make it onto the top 25 list.

Often programmers want to try out slight variations in their programs. If you already have a program
named "foo V1.0" on the hill, adding the line ";kill foo" to a new program will automatically
bump foo 1.0 off the hill. Just ";kill" will remove all of your programs when you submit the
new one. The server kills programs by assigning an impossibly low score; it may therefore take
another successful challenge before a killed program is actually removed from the hill.

Sample Entry

;redcode
;name Dwarf
;author A. K. Dewdney
;strategy Throw DAT bombs around memory, hitting every 4th memory cell.
;strategy This program was presented in the first Corewar article.
bomb DAT #0
dwarf ADD #4, bomb
 MOV bomb, @bomb
 JMP dwarf
 END dwarf ; Programs start at the first line unless
 ; an "END start" pseudo-op appears to indicate
 ; the first logical instruction. Also, nothing
 ; after the END instruction will be assembled.

10

Hill Name
Hill
Size

Core
Size

Max.
Processes

Duration
Before

Tie

Max.
Entry

Length

Min.
Distance

Rounds
Fought

Instr.
Set

Pizza’s ICWS ’94
Draft Hill (Accessed
with
";redcode-94")

25 8000 8000 80000 100 100 200
Extended
ICWS
’94 Draft

Pizza’s Beginner’s Hill
(Accessed with
";redcode-b")

25 8000 8000 80000 100 100 200
Extended
ICWS
’94 Draft

Pizza’s Experimental
(Small) Hill (Accessed
with ";redcode-x")

25 800 800 8000 20 20 200
Extended
ICWS
’94 Draft

Pizza’s Limited
Process (LP) Hill
(Accessed with
";redcode-lp")

25 8000 8 80000 200 200 200
Extended
ICWS
’94 Draft

Stormking’s ICWS ’88
Standard Hill
(Accessed with
";redcode")

20 8000 8000 80000 100 100 250
ICWS
’88

Stormking’s ICWS ’94
No Pspace Hill
(Accessed with
";redcode-94nop")

20 8000 8000 80000 100 100 250
ICWS
’94

Stormking’s ICWS ’94
Experimental (Big) Hill
(Accessed with
";redcode-94x")

20 55440 55440 500000 200 200 250
Extended
ICWS
’94 Draft

Stormking’s ICWS ’94
Multi-Warrior Hill
(Accessed with
";redcode-94m")

10 8000 8000 80000 100 100 200
Extended
ICWS
’94 Draft

Note: Warriors on the beginner’s hill are retired at age 100.

If you just want to get a status report without actually challenging the hills, send email with
";status" as the message body (and don’t forget "Subject: koth" for "pizza"). If you send
mail to "pizza" with "Subject: koth help" you will receive instructions that may be more up to
date than those contained in this document.

At "stormking", a message body with ";help" will return brief instructions. If you submit code
containing a ";test" line, your warrior will be assembled but not actually pitted against the warriors
on the hill.

11

At "pizza", you can use ";redcode[-??] test" to do a test challenge of the Hill without affect-
ing the status of the Hill. These challenges can be used to see how well your warrior does against the
current Hill warriors.

All hills run portable MARS (pMARS) version 0.8, a platform-independent Core War system avail-
able at www.koth.org.

The ’94 and ’94x hills allow five experimental opcodes and three experimental addressing modes
currently not covered in the ICWS’94 draft document:

LDP - Load P-Space
STP - Store P-Space
SEQ - Skip if EQual (synonym for CMP)
SNE - Skip if Not Equal
NOP - (No OPeration)
* - indirect using A-field as pointer
{ - predecrement indirect using A-field
} - postincrement indirect using A-field

[ToC]

15. Is it DAT 0, 0 or DAT #0, #0? How do I compare to
core?
Core is initialized to DAT 0, 0. This is an illegal instruction (in source code) under ICWS’88 rules
and strictly compliant assemblers (such as KotH or pmars -8) will not let you have a DAT 0, 0
instruction in your source code - only DAT #0, #0. So this begs the question, how to compare
something to see if it is empty core. The answer is, most likely the instruction before your first instruc-
tion and the instruction after your last instruction are both DAT 0, 0. You can use them, or any other
likely unmodified instructions, for comparison. Note that under ICWS’94, DAT 0, 0 is a legal
instruction.

[ToC]

16. How does SLT (Skip if Less Than) work?
SLT gives some people trouble because of the way modular arithmetic works. It is important to note
that all negative numbers are converted to positive numbers before a battles begins. Example: -1
becomes M-1 where M is the memory size (core size).

Once you realize that all numbers are treated as positive, it is clear what is meant by "less than". It
should also be clear that no number is less than zero.

[ToC]

12

http://www.koth.org/pmars.html

17. What is the difference between in-register and in-memory
evaluation?
These terms refer to the way instruction operands are evaluated. The ’88 Redcode standard ICWS’88
is unclear about whether a simulator should "buffer" the result of A-operand evaluation before the
B-operand is evaluated. Simulators that do buffer are said to use in-register evaluation, those that
don’t, in-memory evaluation. ICWS’94 clears this confusion by mandating in-register evaluation.
Instructions that execute differently under these two forms of evaluation are MOV, ADD, SUB, MUL,
DIV and MOD where the effective address of the A-operand is modified by evaluation of the
B-operand. This is best illustrated by an example:

 L1 mov L2, <L2
 L2 dat #0, #1

Under in-register evaluation, the L2 instruction is saved in a buffer before the L2 memory location is
decremented by evaluation of the B-operand of L1. The saved DAT #0,#1 instruction is then written
to L2, leaving it unchanged.

Under in-memory evaluation, the L2 instruction is not buffered and thus decremented by evaluation of
the B-operand. After execution of L1, L2 changes to DAT #0,#0.

[ToC]

18. What is P-space?
P-space is an area of memory which only your program’s processes can access. The contents of each
memory location are preserved between rounds in a multi-round match.

P-space is in many ways different from the core. First of all, each P-space location can only store one
number, not a whole instruction. Also, the addressing in P-space is absolute, ie. the P-space address 1
is always 1 regardless of where in the core the instruction containing it is. And last but not least,
P-space can only be accessed by two special instructions, LDP and STP.

The syntax of these two instructions is a bit unusual. STP, for example, has an ordinary value in the
core as its source, which is put into the P-space field pointed to by the destination. So the P-space loca-
tion isn’t determined by the destination address, but by its value, ie. the value that would be overwrit-
ten if this were a MOV. So STP.AB #Q, #R would put the value Q into the P-space field R mod
PSPACESIZE. Similarly,

 stp.b 2, 3
 dat 0, 0
 dat 0, 9
 dat 0, 7

would put the value 9 into the P-space field 7. LDP works the same way, except that now the source is
a P-space field and the destination a core instruction. The P-space location 0 is a special location. It is
initialised to a special value before each round. This value is:

-1 (or CORESIZE-1) at the beginning of the first round
0 if the program died in the previous round
The number of surviving programs if the program did not die in the previous round

13

This means that for one-on-one matches, loss=0, win=1 and tie=2.

The default size of P-space is 1/16 of the core size. This size is the value of the predefined variable
PSPACESIZE. The addresses in the P-space wrap around just like in the core, ie. you can store a
value from 0 to CORESIZE-1 in each P-space location. All P-space values (except for location 0) are
0 initially.

[ToC]

19. What does "Missing ;assert .." in my message from
KotH mean?
This means you have omitted an ";assert" line in your submission. ";assert" is used to specify
which environments your code will work under or was designed for. For example, if your warrior was
written for the ’94 draft hill then you can put:

;assert CORESIZE==8000

in your code, meaning that an error will occur if you attempt you compile the code for a different core
size. If you don’t want to use the features of ";assert" and you want to get rid of the annoying
warning just put:

;assert 1

in your code, which means it will compile unconditionally.

[ToC]

20. How should I format my code?
The way you format your code is really your own choice in the end. If you are new to the game then
use the style you feel most comfortable with. However, using a common format helps others to under-
stand your code quicker. Most players tend to use the following conventions when writing code:

use lower case for location names and opcode names
don’t add opcode modifiers if you don’t need to, eg. add.ab #1, #2 is the same as add #1,
#2
use whitespace after every comma
use tabs to align the opcodes, the instruction field(s) and any comments
do not use $ (direct addressing mode) or : (suffix of some labels)

[ToC]

14

21. Are there any other Core War related resources I should
know about?
Using genetic algorithms to generate warriors has been attempted by a number of people. There are a
number of resources available for people who are interested in doing some experimentation:

There is a Core War genetic algorithms mailing list at corewar-ga-request@sunsite.auc.dk. The
FTP site for this list is at ftp://sunsite.auc.dk/pub/local/corewar/. The administrator is Martin
Pedersen (martin.pedersen@person.dk).
Jason’s Core War project page (http://www.avalon.net/~jboer/projects/corewar/corewar.html)
contains a C program which can evolve warriors, along with some previously generated warriors.
Core Wars Genetics: The Evolution of Predation by John Perry can be found at
http://www.koth.org/evolving_warriors.html.
The most recent paper on Core War evolution is by Ryan Coleman and can be found at
http://www.geocities.com/CapeCanaveral/Launchpad/6898/paper.html.

[ToC]

22. What does (expression or term of your choice) mean?
Here is a selected glossary of terms. If you have a definition and/or term you wish to see here, please
send it to me.

(References to an X-like program mean that the term X is derived from the specific program X and has
become a generic term).

Binary launch
One of several means to start an imp-spiral running. The fastest launch technique, but requires the
most code. See also JMP/ADD Launch and Vector Launch.

 impsize equ 2667
 example spl 4 ; extend by adding spl 8, spl 16, etc.
 spl 2
 jmp imp+(0*impsize) ; jmp’s execute in order
 jmp imp+(1*impsize)
 spl 2
 jmp imp+(2*impsize)
 jmp imp+(3*impsize)
 imp mov 0, impsize ; in ’94 use -> mov.i #0, impsize

Bootstrapping
Strategy of copying the active portion of the program away from the initial location, leaving a
decoy behind and making the relocated program as small as possible.

B-Scanners
Scanners which only recognize non-zero B-fields.

 example add #10, scan
 scan jmz example, 10

c
Measure of speed, equal to one location per cycle. Speed of light.

15

ftp://sunsite.auc.dk/pub/local/corewar/
http://www.avalon.net/~jboer/projects/corewar/corewar.html
http://www.koth.org/evolving_warriors.html
http://www.geocities.com/CapeCanaveral/Launchpad/6898/paper.html

CMP-Scanner
A Scanner which uses a CMP instruction to look for opponents.

 example add step, scan
 scan cmp 10, 30
 jmp attack
 jmp example
 step dat #20, #20

Colour
Property of bombs making them visible to scanners, causing them to attack useless locations, thus
slowing them down.

 example dat #100

Core-Clear
Code that sequentially overwrites core with DAT instructions; usually the last part of a program.

Decoys
Bogus or unused instructions meant to slow down scanners. Typically, DATs with non-zero
B-fields.

Decrement Resistant
Property of warriors making them functional (or at least partially functional) when overrun by a
DJN-stream.

DJN-Stream (also DJN-Train)
Using a DJN command to rapidly decrement core locations.

 example ...
 ...
 djn example, <4000

Dwarf
The prototypical small bomber.

Gate-busting (also gate-crashing)
technique to "interweave" a decrement-resistant imp-spiral (e.g. MOV 0, 2668) with a standard
one to overrun imp-gates.

Hybrids
warriors that combine two or more of the basic strategies, either in sequence (e.g. stone->paper)
or in parallel (e.g. imp/stone).

Imp
Program which only uses the MOV instruction.

 example mov 0, 1

or

 example mov 0, 2
 mov 0, 2

Imp-Gate
A location in core which is bombed or decremented continuously so that an Imp can not pass.
Also used to describe the program-code which maintains the gate.

 example ...
 ...
 spl 0, <example
 dat <example, #0

16

Imp-Ring
A minimal Imp-Spiral.

 D EQU (CORESIZE+1)/3
 a mov 0, D ; copy self to b
 b mov 0, D ; copy self to c
 c mov 0, D ; copy self to a+1

Imp-Spiral
An Imp-like program with two or more processes supporting each other. A three-point spiral,
with six processes running in this sequence:

 D EQU (CORESIZE+1)/3
 a mov 0, D ; copy self to b
 b mov 0, D ; copy self to c
 c mov 0, D ; copy self to a+1
 a+1 mov 0, D ; copy self to b+1
 b+1 mov 0, D ; copy self to c+1
 c+1 mov 0, D ; copy self to a+2

Incendiary Bomb
A type of Stun bomb which creates a SPL 0 carpet.

 example spl 0, 8
 mov -1, <-1

JMP/ADD Launch
one of several means to start an imp-spiral running. The slowest launch technique, but requires
the least code. See also Binary Launch and Vector Launch.

 IMPSIZE EQU 2667
 example spl 1 ; extend by adding more spl 1’s
 spl 1
 spl 2
 jmp @0, imp
 add #IMPSIZE, -1 ; bump address by impsize after each jmp
 dat #0, #0 ; excess processes must die!
 imp mov 0, IMPSIZE ; in ’94 use -> mov.i #0,IMPSIZE

Mirror
see reflection.

On-axis/off-axis
On-axis scanners compare two locations M/2 apart, where M is the memory size. Off-axis scan-
ners use some other separation.

Optimal Constants
(also optima-type constants) Bomb or scan increments chosen to cover core most effectively, i.e.
leaving gaps of uniform size. Programs to calculate optimal constants and lists of optimal
numbers are available at www.koth.org.

Paper
A Paper-like program is one which replicates itself many times. Part of the Scissors (beats) Paper
(beats) Stone (beats Scissors) analogy.

P-Warrior
A warrior which uses the results of previous round(s) in order to determine which strategy it will
use.

17

ftp://www.koth.org/corewar

Pit-Trapper
(also Slaver, Vampire). A program which enslaves another. Usually accomplished by bombing
with JMPs to a SPL 0 pit with an optional core-clear routine.

Q^2 Scan
A modern version of the Quick Scan where anything found is attacked almost immediately.

Quick Scan
2c scan of a set group of core locations with bombing if anything is found. Both of the following
codes snips scan 16 locations and check for a find. If anything is found, it is attacked, otherwise
16 more locations are scanned.

Example:

 start
 s1 for 8 ;’88 scan
 cmp start+100*s1, start+100*s1+4000 ;check two locations
 mov #start+100*s1-found, found ;they differ so set pointer
 rof
 jmn attack, found ;if we have something, get it
 s2 for 8
 cmp start+100*(s2+6), start+100*(s2+6)+4000
 mov #start+100*(s2+6)-found, found
 rof
 found jmz moveme, #0 ;skip attack if qscan found nothing
 attack cmp @found, start-1 ;does found points to empty space?
 add #4000, found ;no, so point to correct location
 mov start-1, @found ;move a bomb
 moveme jmp 0, 0

In ICWS’94, the quick scan code is more compact because of the SNE opcode:

 start ;’94 scan
 s1 for 4
 sne start+400*s1, start+400*s1+100 ;check two locations
 seq start+400*s1+200, start+400*s1+300 ;check two locations
 mov #start+400*s1-found, found ;they differ so set pointer
 rof
 jmn which, found ;if we have something, get it
 s2 for 4
 sne start+400*(s2+4), start+400*(s2+4)+100
 seq start+400*(s2+4)+200, start+400*(s2+4)+300
 mov #start+400*(s2+4)-found-100, found
 rof
 found jmz moveme, #0 ;skip attack if qscan found nothing
 add #100, -1 ;increment pointer till we get the
 which jmn -1, @found ;right place
 mov start-1, @found ;move a bomb
 moveme jmp 0, 0

Reflection
Copy of a program or program part, positioned to make the active program invisible to a
CMP-scanner.

Replicator
Generic for Paper. A program which makes many copies of itself, each copy also making copies.

Self-Splitting
Strategy of amplifying the number of processes executing a piece of code.

18

 example spl 0
 loop add #10, example
 mov example, @example
 jmp loop

Scanner
A program which searches through core for an opponent rather than bombing blindly.

Scissors
A program designed to beat replicators, usually a (B-field scanning) vampire. Part of the
Paper-Scissors-Stone analogy.

Self-Repair
Ability of a program to fix it’s own code after attack.

Silk
A replicator which splits off a process to each new copy before actually copying the code. This
allows it to replicate extremely quickly. Example:

 spl 1
 mov -1, 0
 spl 1 ;generate 6 consecutive processes
 silk spl 3620, #0 ;split to new copy
 mov >-1, }-1 ;copy self to new location
 mov bomb, >2000 ;linear bombing
 mov bomb, }2042 ;A-indirect bombing for anti-vamp
 jmp silk, {silk ;reset source pointer, make new copy
 bomb dat >2667, >5334 ;anti-imp bomb

Slaver
see Pit-Trapper.

Stealth
Property of programs, or program parts, which are invisible to scanners, accomplished by using
zero B-fields and reflections.

Stone
A Stone-like program designed to be a small bomber. Part of the Paper-Scissors-Stone analogy.

Stun
A type of bomb which makes the opponent multiply useless processes, thus slowing it down.
Example is referred to as a SPL-JMP bomb.

 example spl 0
 jmp -1

Two-Pass Core-Clear (also SPL/DAT Core-Clear)
core clear that fills core first with SPL instructions, then with DATs. This is very effective in
killing paper and certain imp-spiral variations.

Vampire
see Pit-Trapper.

Vector Launch
one of several means to start an imp-spiral running. As fast as Binary Launch, but requiring much
less code. See also JMP/ADD Launch and Binary Launch. This example is one form of a Vector
Launch:

19

 sz EQU 2667

 spl 1
 spl 1
 jmp @vt, }0
 vt dat #0, imp+0*sz ; start of vector table
 dat #0, imp+1*sz
 dat #0, imp+2*sz
 dat #0, imp+3*sz ; end of vector table
 imp mov.i #0, sz

[ToC]

23. Other questions?
Just ask in the rec.games.corewar newsgroup or contact me. If you are shy, check out the Core War
archives first to see if your question has been answered before.

[ToC]

Credits
Additions, corrections, etc. to this document are solicited. Thanks in particular to the following people
who have contributed major portions of this document:

Mark Durham (wrote the original version of the FAQ)
Paul Kline
Randy Graham
Stefan Strack (maintained a recent version of the FAQ)

Copyright © 1999 Anton Marsden.

Verbatim copying and distribution of this entire article is permitted in any medium, provided this
notice is preserved.

20

ftp://www.koth.org/pub/corewar/newsgroup
ftp://www.koth.org/pub/corewar/newsgroup
http://validator.w3.org/
http://jigsaw.w3.org/css-validator

	Core War Frequently Asked Questions †rec.games.corewar FAQ‡
	To Do
	What's New
	Table of Contents
	1. What is Core War?
	2. Is it "Core War" or "Core Wars"?
	3. Where can I find more information about Core War?
	4. Core War has changed since Dewdney's articles. Where do I get a copy of the current instruction set?
	5. What is ICWS'94? Which simulators support ICWS'94?
	6. What is the ICWS?
	7. What is Core Warrior?
	8. Where are the Core War archives?
	9. Where can I find a Core War system for . . . ?
	10. Where can I find warrior code?
	11. I do not have FTP. How do I get all this great stuff?
	12. I do not have access to Usenet. How do I post and receive news?
	13. Are there any Core War related WWW sites?
	14. What is KotH? How do I enter?
	Entry Rules for King of the Hill Corewar
	Sample Entry

	15. Is it DAT 0, 0 or DAT #0, #0? How do I compare to core?
	16. How does SLT †Skip if Less Than‡ work?
	17. What is the difference between in-register and in-memory evaluation?
	18. What is P-space?
	19. What does "Missing ;assert .." in my message from KotH mean?
	20. How should I format my code?
	21. Are there any other Core War related resources I should know about?
	22. What does †expression or term of your choice‡ mean?
	23. Other questions?
	Credits

