This file located ghttp://www.geodiescom/CapeCanaveral/Laurftad6898/evolwng.htm|
Text-only version located fttp://www.geodiescom/CapeCanaveral/Laurffad6898/evolng.txi

Ryan Coleman

L earning By Simulating Evolution Using Corewars

Abstract

The goal of this project is to prove tletrenvariors can learn byimuating evolution. | will try to

show that theoraewvarriors have learned survival out efoluion. This will beacconplishedusing a
computer program thaimuatesevoluion using genetialgaithms This paper was first prepared and
presented in aArtificial Intelligenceclass aVilmington Colleg¢in the Spring semester of 1998. The
class was taught by JiRitzsinmons Ph. D.

Background

Evolution

Evolution is a concept put forward by Charles Darwin in his The Origin of Species. After lots of
debate, it has becongeneally accepted amonsgiertists (Winston, Patrick Henry, 507). In summary
form, the drivingprinciplesof evolution are:

"-Eachindividual tends to pass on its traits to its offspring.

-Nevethdess nature producesdividuals with differenttraits.

-The fittestindividuals--those with the mogavorabletraits--tend to have more offspring than do those
with unfavorabletraits, thus driving thpopuation as a whole towarfhvorabletraits.

-Over long periodsyariation canaccunulate, produdng entirely new species whose traits make them
espeially suited tgpartiaular ecologcal niches." (Winston, Patrick Henry, 507)

Thesetheaiesare veryimportantin many fields of science today. The third theory is also known as
the theory of naturaeledion, or survival of thdittest.

Today, in genetialgarithms there are three methods usegémeics to change the code. (Winston,
Patrick Henry, 512) They arautdion, repraludion, and crossoveMutation, the simplest of all,
involveschangng a single piece of code, mverting the same piece of codeepraludion is reward

ing good code with moreeplicasof itself in the set. Crossover involves cutting two pieces of code in
half at some point, and thewitching the tail end around. Marargumentshave been made as to
which of these holds the madstportance but, it is still being debated. (Peters, James A.) Also, many
differentmethods of each kind have bedavebped such as crossover where two points are picked,
and only the code in between axeitched.

Corewars

Corenvarsis a game created by A. K. Dewdney in a seriegtiflesin Scienific American

(Dewdney, A.K., The Armchair Universe) The 'core’ in corewar was an early name for memory. A
core is a linear looping linear memory with each place in memory able to hold one congbltate

tion. By linear, | mean thahstrudions arereferencedby a single number, no matrix or array is used.
The memory is said to loop because after thenastudion in memory the firsinstrudion can be

http://www.geocities.com/CapeCanaveral/LaunchPad/6898/evolving.html
http://www.geocities.com/CapeCanaveral/LaunchPad/6898/evolving.txt
http://www.wilmington.edu/

executed. This could be pictured as a circle. It is also vmeetiitioring that there are nabsdute
referencesn corewvars everythingis referencedin terms of thenstrudion execuing. There areseven
teen(or nineteen instrudionsthat can be used oorevars By far, the mosimportantinstrudion in
corewar is the DATnstrudion. No matter what the A and B fields contain, a Di&iminatesthe
process if that process executes the DAT. Notice process is used and not program. A program in
corewar can split into two or more processes by use of thenS®udion. Two programs are loaded
into randonpostionsin the core where they battle it out. After a certain number of cycles, if neither
program has quixecuing, a tie is declared. If one progrderminates the other is declared the
winner.Bastcally, if you can make all yousppments processes execute a DAT, you win. This is
where the 'war’ in corewar comes in. A bragscrigion of eachinstrudion, modifier, andaddresmg
mode is given in Appendix A of this paper. To fullgdestandcorenars| suggest the Frequently
AskedQuesionslist of rec.games.corewar. (Durham, Mark, et. al.)

Another aspect aforevarswas the early creation of '’King of the Hitbumaments (Durham, Mark,

et. al.) The name is based on the game played on a dirt pile, or hill, evteeyenetries to run up and

push the person at the top off. Each hill has a specific stamiardswhich people write warriors for.
Entries aresubmitedvia e-mail, and a script that will run on a web-browser is in the works. After the
battles are run, you receive results back. Usually, there are 20 to 25 warriors on the hill that you must
score better than to get on the hill and knock one of them off. Usually, 100 battles take place between
your warrior and each of the other warriors. As fastaglardsgo, the main hill now has@resize of

8000, it goes 80000 cycles before a tie, has 8000 processes, a maximunmefru@ins awards 3

points for a win, 1 for a tie, and 0 for a loss. This hill also does fights on a one-on-one basis. There are
other hills, such as a limited process hilinaltiwarrior hill (everyonefights at the same time), a

begimer's hill where 'newbies’ are invited to test their code, and a 'baby’ hill. The baby hilieis

esing because the numberiastrudionsare limited to 20, theoresizeis 800, and it only goes 8000
processes before a tie. This makes the baby hill run much faster thaoalritsparts

| should also make mention of thdferenttypes of warriors that have been created over the years.
There are three basic types that follow the idea ofhildhoodgamepaper-rock-scisors A paper is a
replicator. It makes many copies of itself and usually has lots of processes. Papers are usually durable
and usually have a small bombing routine at the end of their code to help kifigtreent A rock or

stone is a warrior that bombs the core with DATSs or other bonapsfully landing a bomb on the

oppaent A scissor is a warrior that scans the core for other warriors, and then bombs them. In
general, a paper beats a stone, a stone beats a scissor, and a scissor beats a paper. It should also be
noted hybrids and many other forms of these warriors exist. Netatsgy dominatescorevars

today, rather a good warrior uses elements from all of them to win.

CorewarsLingo

This is a sectioimtrodudng the reader to the jargon that has become commooréwvars First, off,

as has already been mentioned, bombing. Bombing consists of using anktéidion to move one
instrudion over another. Thimstrudion that gets moved is called the bomb. For example, let's look at
a very simple bomber, written by A. K. Dewdney (Dewdney, A. K., The Armthdirerse):

nov. i $3, $7
add. ab #4, $-1
jmp.a $-2, #0
dat . f #0, #0

Execion starts at the MOVhstrudion. Thisinstrudion moveswhateveris at theocation 3 places
ahead of it, in this case the DAdstrudion, to 7instrudions ahead of itExecuion contiruesto the

ADD instruction which adds 4 to the B-field of the instruction before it, the MOV. This changesthe 7
to an 11. The IMP instruction sends execution back to the MOV, which bombs again. Let’ s look at
how two of these warriors would fight against each other and how aDAT bomb kills.

nov. i $3, $7 <-- execution for this warrior starts here
add. ab #4, $-1
jmp.a $-2, #0
dat.f #0, #0
(enpty line)
(enpty line)
(enpty line)
(enpty line)
nov. i $3, $7 <-- execution for this warrior starts here
add. ab #4, $-1
jmp.a $-2, #0
dat. f #0, #0
(enpty line)
(enpty line)
(enpty line)

(enpty line)

First off, the empty lines are initialized as DAT.F #0, #0. By using the empty line | can better show
what each warrior is doing. The MOV s bomb the fourth empty line and the ADDs change the values
of the B-field of the MOV instruction. Next, the IM Ps send execution back the each MOV. The core
now looks like this:

nov. i $3, $11 <-- executing here
add. ab #4, $-1
jnp.a $-2, #0
dat . f #0, #0
(enmpty line)
(enmpty line)
(enmpty line)
dat . f #0, #0
(enmpty line)
nov. i $3, $11 <-- executing here
add. ab #4, $-1
jnp.a $-2, #0
dat . f #0, #0
(enmpty line)
(enmpty line)
(enmpty line)
dat . f #0, #0

(lots nore enpty |ines)

Now, the first warrior puts a DAT right on his opponents JMP. The second warrior, because of its
position this round, has to bomb all the way around the core before it can bomb the other warrior. Such
is chaos. Anyways, after both warriors bomb and add again, the core looks like this:

nov. i $3, $15
add. ab #4, $-1
jmp.a $-2, #0 <--executing here
dat . f #0, #0
(enpty |ine)
(enpty |ine)
(enpty |ine)
dat . f #0, #0
(enpty |ine)

nov. i $3, $15

add. ab #4, $-1
dat . f #0, #0 <-- executing here
dat . f #0, #0
(enpty line)
(enpty line)
(enpty line)
dat . f #0, #0
(enpty line)
(enpty line)
(enpty line)
dat . f #0, #0

(lots nore enmpty I|ines)

Now, the first warrioisuccestilly jumps back to it's MOMnstrudion. The second warrior executes
the DAT statenentand that procegsrminates If the second warrior had more than one process, it
could still run, but since it only has one, it has lost. It should be noted you can use other forms of
bombing, suclas:

j mp. X #0, #0

Which 'stun’ theoppmentand all processes that execute the JMP will jump back to the same line for
the rest of the round unless acted upon. This will slow down and perhaps stop the other warrior from
execuing harmfulstatenentsto you.

Another piece ofargon--spliting. A program can use the SRistrudion to create two or more
processes. It can also be used todwldbility. If we add a SPIstatenentto thebegiming of
Dewdney’s warrior, weet:

spl.a #0, #0
nov. i $3, $7
add. ab #4, $-1
jmp.a $-2, #0
dat . f #0, #0

What this does is have one procegscuing the MOV instrudion and one stilexecuing the SPL

instrudion. This will always be true. The SRihstrudion will continue to create more and more

processes which all execute the MOV/ADD/IJMP part of the warrior. If theil@®ludion gets

bombed with a DAT, the warrior can still execute fine likegheviousversion. If the JMBtatenent

gets hit with a DAT bomb, the warrior is still fine because the SPL creates processes all the time which
execute the MOV and ADBtatanents thenterminateon the DAT. If one of the MOV or ADBtate
mentsgets hit by a DAT bomb, the warrior still survives, but doesn’t do anything useful.

Now let’s look at the DJNhstrudion. Thisinstrudion does many things all at once. A simple warrior
that uses only the DJNstrudion would looklike:

din.a $0, <-1

What happens when this warrior executes? Let's see how this waoriks:

dat . f #0, #0
din.a $0, <-1 <--executing here

(enpty |ines)

Thewarrior will use the B-field of the DAT instruction before it, as a pointer to decrement. Because of
the .A addressing mode, the A-field of whatever is pointed to is decremented. In this case, the DAT is
decremented. But, because of < modifier, the pointer also gets decremented. Also, the DJN instruction
jumps to whatever is pointed to by the A-field of the DJIN instruction, so it jumps back to the same
place. After a couple executions, the core looks like this:

dat.f #-1, #0

dat.f #-1, #0

dat.f #-1, #-3

din.a $0, <-1 <--executing here
(enmpty lines)

So, thiswarrior will decrement the A-field of every instruction in core eventually. This could interfere
with opponent’s code, but what if it doesn’t and this warrior doesn’t win after one pass. Let’ s see what
happens after it has decremented almost every instruction in core. Remember, the core loops around
itself, so eventualy, it should be expected that the DJIN instruction could decrement itself:

dat . f #-1, #0

dat . f #-1, #0

dat . f #-1, #- 799

din.a $0, <-1 <--executing here
dat . f #-1, #0

dat . f #-1, #0

dat . f #-1, #0

(enpty |ines)

The-799 is used because | ran all my simulations with a coresize of 800. If the coresize were 8000,
then -7999 would be here. Now, if it executes thistime, look what happens:

dat . f #-1 #0

dat . f #-1 #0

dat . f #-1, #- 800

din.a $-1, <-1 <--executing here
dat . f #-1 #0

dat. f #-1 #0

dat . f #-1, #0

(enpty lines)

Now, the DJIN jumps to whatever is pointed to in its A-field. It has previously been O, jumping back to
the same instruction. But now it is-1. It will jump back to the DAT statement and it will terminate
there. Thisis called asuicidal warrior. If thiswarrior doesn’t successfully terminate the opponent, it
will terminate itself.

Throughout this experiment, references will be made as to speed at which warriors move bombs
through the core. ¢ is commonly the variable used for the speed of light. It is also used in corewars as
the variabl e representing the speed of light. If a program bombs at 100%c, it bombs one instruction for
every instruction it executes. Dewdney’ swarrior illustrated earlier bombs at 33%c because it bombs
one instruction for every three instructions it executes.

Another kind of warrior is called a coreclear. A coreclear works by using either <, >, {, or } to change
the position of the bomb each time sequentially through core. Here's a simple coreclear:

nmov. i $2, <1
jmp.a $-1, #0
dat . f #0, #0

After a few cycles where the pointerdecrenented the core looks lik¢his:

dat . f #0, #0
dat . f #0, #0
dat . f #0, #0
dat . f #0, #0
dat . f #0, #-5
nov. i $2, <1
jmp.a $-1, #0
dat . f #0, #0
(enpty lines)

This will evertually put a DAT bomleverywherein the core. This kind is calledoackvardscore
clearbecause the bombs are laid daseguetially backvardsusing the <. If it was a > and you
changed the pointdocaion to 3, then it would be a forwambreclear

Another change in thetardardsuicidal coreclearis to make irepeaing. A repeaing backvardscore

clearwould look likethis:

nov. i $2, <3
jmp.a $-1, #0
dat . f #0, #-4
dat . f #0, #-4

Obviously, the first DATinstrudion is bombedhroughout the corebackvards Let’s look at what
happens when the warrior would commit suicide with thardttudions

(rmore of the sane dat.f #0, #-4)

dat . f #0, #-4
nmov. i $2, <3
jnp.a $-1, #0
dat . f #0, #-4
dat . f #0, #- 799
dat . f #0, #-4
dat . f #0, #-4
(rmore dat.f #0, #-4)

Now let’'s see what happens when the M&@écutes:

(rmore of the sanme dat.f #0, #-4)

dat . f #0, #-4
nov. i $2, <3
jmp.a $-1, #0
dat . f #0, #-4
dat . f #0, #-4
dat . f #0, #-4
dat . f #0, #-4
(rmore dat.f #0, #-4)

Now the warrior will begin placing DATnhstrudions before its code. It will continue to do this until
the cycles have run out or it hasn.

The next terminology that can be defined is the use of pointers. Let’slook at the following version of a
coreclear:

nmov. i $2, <1
jnp.a $-1, <-2
dat . f #0, #0

Now for what happens after the MOV and JM P instructions have been executed once:

(rmore enpty lines)

dat . f #0, #0
dat . f #0, #-2
nov. i $2, <1
jmp.a $-1, <-2
dat . f #0, #0

(rmore enpty lines)

Notice at this point in anormal coreclear, the DAT pointer would only be -1, but instead it is -2.
Watch how this warrior bombs through core:

(rmore enpty lines)

(enpty |ine)
dat . f #0, #0
(enpty |ine)
dat . f #0, #0
(enpty |ine)
dat . f #0, #0
dat . f #0, #-6
nmov. i $2, <1
jmp.a $-1, <-2
dat . f #0, #0

(rmore enpty lines)

Every other line gets bombed in this example. The ones in between are not touched, but this kind of
warrior is better because it has a better chance of finding and terminating the opposing warrior before
anormal coreclear would.

A self-mutating warrior is meant to change it’s own form at specific, hopefully key instances. Let’s
change Dewdney’ s warrior that bombs a DAT every fourth position to the following:

spl.a #0, #0
nov. i $3, $5
add. ab #4, $-1
jnmp. a $- 2, #0
dat . f >-1, #0

Now, instead of bombing with aDAT instruction with numbers of 0, it usesthoseto it’'s advantage.
Execution is exactly the same, until it has bombed all the way around the core and is about to bomb
over itself. Here is what the core would look like:

.(more empty lines with dat.f >-1, #0 thrown in every fourth position)

dat . f >-1, #0
(enpty line)
spl.a #0, #0

nov. i $3, $1 <--- about to execute this instruction

add. ab #4, $-1

jnp.a $-2, #0
dat . f >-1, #0
(enpty line)
dat . f >-1, #0
(enpty line)
(enpty line)
(enpty line)
dat . f >-1, #0

.(more empty lines with dat.f >-1, #0 thrown in every fourth position)

Now look what happens. The MOV puts the DAT bomb over its own Ai3Budion. Now look how
the warriorexecutes:

.(more enpty lines with dat.f >-1, #0 thrown in every fourth position)

dat . f >-1, #0
(enmpty line)
spl.a #0, #0
nov. i $3, $1
dat . f >-1, #0 <--- about to execute this instruction
jnp.a $-2, #0
dat . f >-1, #0
(enpty line)
dat . f >-1, #0
(enpty line)
(enmpty line)
(enmpty line)
dat . f >-1, #0

.(more enpty lines with dat.f >-1, #0 thrown in every fourth position)

Now look what happens. The DA&rminatesthe process, but not befordritrementstheprevious
instrudions B-field. This just happens to be where the MOV will throw it's next DAT bomb. This
warrior that initially bombed every fourfbostion in the core with a DAT bomb turns itself into a
33%c forwardcoreclear Thisimprovementis called selmutation.

It has been mentioned that only a DiStrudion terminatesa process. This isn’t always true. Two
otherinstrudion can serve tterminateprocesses. These are DIV and MOD. Both of tiesteudions
deal with divison. If either of them are asked to divide by zero,tdrayinateas this isnathemaically
impossible. This could be compared to a Divide by Zero error message you may receivdetiite
ging programs.

What’s been done with Evolutionary Computing Before

Non-corewars

The first mention of the words geneéilgaithm occurs in a paper published in 1967 by Bagley.
(Goldberg David E., 92) He used genetilgaithmsto develop game player controls fohaxa
pawn game,bastally a 3 x 3 matrix with eacbppmenthaving three pawns at either end of the
board. He usethutéion, repradudion, and crossover to produst&atgiesfor winning this game.

Many other early pioneers worked out genatgarithmsto develop answers to specifimbdems
only, notapplicéble to any other field or program. Aexcelentlist of these and many other exploits
into genetialgaithmsare contained in Genetidgorithmsin SearchOptimizaion, and Machine
Learring. (Goldberg David E.,126-127)

John H. Holland did the first major series of works on gerdgiaithms 23 years ago at théniver-
sity of Michigan (Gibbs, W. Wayts, 1) His methods required using gnbdemsthat wereanabgous
to actualchranosomesTherdore, theproddemsthat could be tackled were very limited. Even with
theserestridions Holland did quite a large number of tegGoldberg David E.,126-127)

In 1992, John R. Koza, extended Holland’s methods to solve programs of any size and form. (Gibbs,
W. Wayts, 1) The field hagrtually exploded. Koza’s methods have inspired a variety of work, at

least two Geneti®rogranming Confeencesand he claims 51 Ph.D. theses are in progress dealing
with geneticcompuation of some sort. (GenetRrogranming.org Home Page) (Koza, John)

A few exanpleswhere evolved programs have beempaable to human-written programs appeared
in (Gibbs, W. Wayts, 1). One example used geradtjarithmsto create a program to contropeos
thetichand. A program has also been evolved that is capablamdwering aspaceraft 10 percent
faster than aoluion designed by an expert. Of course these are only axXamplesof what has been
done. Over 800 papers have been written since 1992 thadrdealily with genetic oevoluionary
progranming. (Langdon, WB.).

One of the majoprodemswith these evolved programs is their serious ladkeathbility. (Gibbs, W.
Wayts, 3) The genetiglgaithmsdo not produce programs that use comment secpoosglures or
any means afindestandng the codeTypically, they becomenondithic pieces of code. These take
much more time to read adécpher, and even more time for humans to modify than normal
programs. They may even contain uselasgudionsthat could not be readisepaatedfrom the
useful ones.

Corewars

The first published work oavolving corevarriors was a paper written by John Perry. (Perry, John, 1)
In his paper he describes expeimenthe did in which heverually submitedtwo of his evolved
warriors into thdntemational Coré/NVarsSocietyToumament His warriors got second to last and third
to last. Perry’xpermentsweregeneally incorclusive because he only rang2nestionsand the

'seed’ warriors werdanadvritten proven warriors. He did another test with 1000 randayelyeated
seed warriors and ranggneagtions but in these he tried to mimic thenction of asserbly programs.

| should point out thadsserbly programs are rathéifferentthancorewarriors. Although, it should

be noted, when he did lexperment theprocesig speed otompuerswas very far behind today’s
stardardsand he was limited by that. Even thoughdxpeimentswere slow, they still showed
promise and had goddeas.

The next work that | could find on evolvedrevarriors was not a 'paper’ but rather a long piece of
source code with a rather long comment section. (Boer, Jason, ga_\eaedphlly ran across his
homepagedevoted taevohing corevarriors (Boer, Jason, Jason’s Corewar Project Page). This system
usedmutaion andrepradudion in asomevhatcontrolable (by means of aonfiguration file) popua-

tion of warriors. leveriually decided to base mgxpeimentson his source code, but that comes later.
Evertually, with personal computgrocesig speeds much higher than ever before dreamed of, Jason
was able to evolve some very tough little warriors. It should be noted these warriors rataon a

dard corewar size of 8000. No outside warriors are ever tested against the evolveddetesiiae
fitness, so it is a closed system. Thisasnéhing good because no cleavoluionary goal is present,
except to defeat younrotherdsisters. It'sdrawbacksare speetimitations because of lots of hard disk
accesses. It also takes a longer time to test programs that wait 80000 cycles until a tie is declared.

It should be noted that the best program Jason Boer ever evolved came in 25th, at the very bottom of
thebegimerhill. He ranthousandsof geneetions, and changed theariablesa lot, and could only

evolve a semi-decent program folbaginner hill. This was quite amcconplishmentin itself, but

still leaves much to beesired.

There are a few people who have used Jason Boer’s code to evolve their own warriors. Besides that,
they changed little except varying thutaion rates and number of warriors in eguipuation. Some

have evolved better warriors, but little has been done to improve results to the point where they could
be compettive with human written warriors.

Why Corewars

In The Selfish Gene, there isiwation called thePrisonefs Dilemma. (Dawkins, Richard, 209) In it
he describes theondtionsthat must be met for a good dilemma of this type. They aredymst
sentedby thefollowing chart.

What the opponent does
Frisoner's Dilemma

for Cooperate Defect
Corewars Fairly Good \iary Bad
Cooperate | Reward for | Sucker's Payoff
tA LitLal 0 piants
Cooperation
What My warnor Does 1 point
Wery Good Bad or o0d

Can't happen

Temptation ;
Gl in COreviars goes
Defect to Defect Fo ket BT

3 points Tempt*
AiG 1.5 points

A corewarrior can defect bgxecuing offensive code like bombing with DATS. It cacooperateby
keeping to itself, and nanterfering with theoppment Thisstraegy doesn’t occur frequently, because
almost allcorevarriors are programmed to defect.

As you may noticegorewvarsis anexcelenttool to use to examine tltenseuenceof this dilemma.
Unfortunately, the game does not rely simply on if yoapperateor defect, but mainly how well you

defect due to the fact that Defect-Defect cannot occur. In fact, if you notice, the best choice is to defect
no matter what yousppmentdoes. So, the method you use to defect becomes the factoetirat

minesthe best program.

John Perry, in his paper gave several reasons for asragars (Perry, John, 1-4Forevarshas
manyadvartagesbecause it does not mimic any natural form of life. The rsianilarity between real

life andcorewarsis that in both places, the main urge is survival. He also believes that Dawkins would
have liked acorevarsexpermentwith randomly seeded code because there is noaleationary

goal. People have usedravarsto evolve warriors th&unction well against a test warrior, but these
warriors often failmisemably when they fight againstdifferentwarrior. Warriors in a closed system

like I will be using have no goal, they may evolve intpralictableforms.

10

Setup of Experiment

| used Jason Boer’s ga_war.c (Boer, Jason, ga_war.c) as the primary basigxpemyents |

changed the source code to run under a baby-size hill. This, | believe, led to much faster results,
because in theory it should take 1/10th the time to run a program that goes 8000 cycles before a tie
than one that goes 80000. It also let me reduce the maximum warriors length from 100 to 20. This
reduced thg@ossble number of warriors, and @iminatedmoreprocesig time. | also excluded the
instrudion using P-space (see Appendix A) because of toenplexty and use only in advanced
warriors.

Thefollowing is amathemaical represertation of thepossble numbers oflifferentwarriors for a
baby-size hillassunmng a maximum number of 100. It also assumes non-usage of the two P-space
instrudions

Nurmber of possible Opcodes per instruction = 17
Nurmber of possible Mdifiers per instruction = 14
Nurber of possible Addressing Mbdes per instruction = 14
Number of possible nunbers -100 to +100 = 201

Nurmber of possible instructions = 669732
Vhere x is the number of instructions = x"20 + x"19 + . . . x"2 + x"1

Total number of possible warriors. 3.296 x 107116

That's a lot of possible warriors. That is way too many to search then entire space randoniy Now the sane for a standard size hill, here are the same cal cul ations:
Number of possible Opcodes per instruction =
Nurber of possible Mdifiers per instruction = 14
Nurmber of possible Addressing Mdes per instruction = 14
Nunber of possible nunbers -1000 to +1000 = 2001

Nurmber of possible instructions = 7451724
Vhere x is the number of instructions = X100 + xM99 + . . . X2 + xM1

Total number of possible warriors = 1.681 x 107687

If the number opossble baby warriors was bad, this is much worse. This numi@naingly huge.

To search through the entire space would be neaggssible. By reducing the number of warriors to
baby hillstardards things are improved, but even there the number is much too big to work through
entirely. It will be many times more likely to hit upon a very good warrior in a baby size hill than a
stardardsize hill if you speak only in random terms.

It is necesaryto explain what running geneation means with ga_war.c. The first warrior in the
popuation randomly fights for a certain number of battles one other warrior. If they tie, theyodie

fied accordng to the chances dictated by #@nfiguration file. If one wins outright, the winner

replaces the loser’s code with his own code. If one has a limited win, the winner replaces the loser’s
code with amodified version of itself. All theseariablesare controlled by theonfiguration file. Each
warrior in apopuation does this once pgeneetion. If the randonseledion of oppmentsis good,

this means that eadorevarrior will fight twice pergenestion.

All of these factors put together led me to developcongvarriors with baby sizestardardsrather

than normal. Mainly among these warsecesorand hard drive speed constraints. The next step was to
decide whavariablesto use for theonfiguration file. These can be changed after the program has
stopped running however maggnestionsyou told it to. All the options excepbpuation size and
number of battles werfeinctions of percenages

| decided on @opuation size of 100. | hoped 100 would be big enough to promletasity, but not

too big to slow down the system. The neatiablewasmutaion rate, or how often a random piece of
instrudion would bemodified. Several sources)cluding Jason’fhomgagehad someuggetonsas

far as this goes. (Boer, Jason, Jason’s Corewar Project Ragaiublly settled on initiamuteion

rates of around 15 and varied them down to 4 or 5 as time went alongs&kien and removal rates
were used to insert or remoaddtional individual instrudions | decided they should be kept close
together, as to avoid all warriors having a maximum length of 20 or a minimum lengtH agetully

by keeping the rates famsetion and removal similar and from around 5 to 15 | could keep these two

11

extremes fronhappeing. Theresuredion rate was how often an older version of the warrior would

be brought back from the dead. This was added in case all the current warriors were worse than the
previousones. Theesuredion rate should be kegbmevhatlow, and to promote nemutaions

instead of constantlgvemriting any progress the warriors have made. | kept it below 10.

Again, procesortime was a constraint on the number of battles for each warrior to fight against its
brethren. | chose to start at around 30 and vary it up to 50 and even 100 for some of geadiaal
tions.

I had twocompuerson which | did all of thesexperments They are both IBMompaible PCs. One

is MS-DOS based, and the other is Windows '95 based, although it was restarted in MS-DOS mode to
run thesimuations One has a true Pentium chip, the other has an equally faspf@&sor. The

5x86 machine has 40 megabytes of memory and a rather slow hard drive. The Pentium machine has 16
megabytes of memory and a much faster hard drive. Hard drive speed provéudportant as the

evolution program accesses the disk quite a bit.

| set up botltompuersto do,originally two sepaatepopuations of warriors. Because of file naming
requirenents each set waislertified by only two letters. The set run on the 5x86 machine was called
AB. The set run on the Pentium machine was called AC.

The ga_war.c program uses pMARS to test each warrior. pMARSInsuator that loads the
programs, runs them, and gives the results. (Durham, Mark, &valyonein thecorevarscommu
nity is indebted to Albert Ma, Nandor Sieben, Stefan Strack, and Mintardjo Wangsaw for writing
PMARS.

| also used #reewareprogram called MARS oumamentSchedlerto compare all 100 warriors in
eachgenestion gap, so to speak, when | would tweekiables They were stored isepaatediredo-
riesfor comparsonlater. Thetcoumamentschediler also accesses pMARS to run the battles. Again
thanks go out to Stefan Strack for writing this hapdygram.

It should also be noted that the ga_war.c program usesmutiion andrepradudion. It accom
plishesmutaion by randomlyselecing amodifier, numberaddressmg mode, or opcode armdhangng

it. Again, | used anutaion rate between 5% and 15%attconplishesrepradudion in an unusual
way. Thepopuation size remains constatitrouglout the entiresimuation. Instead ofctually repro
dudng, anycorewarrior that can beat itsppamentconsisently replaces theppamentwith averbdim
copy of itself. If acorevarior beats itppmentby some margin, but not a clear victory, it replaces
the oppmentwith a mutated version of itself. If the two tirsetion, removal mutaion, orresurec
tion can occur.

| feel theexclusionof crossover was a good idea because of thecawswarriors work in general, and

as | found out later, work with evolvedraevarmriors. Most warriors either had some non-useful code
followed by thefunctional code or hadunctional code followed by code that was never executed. This
is the case for some human written warriors, but esergvarior | looked at had this form. Let's do

a crossovehere:

Warrior 1 Warrior 2
[Good, functional code] [non-useful code]
-------------------------------------- Or0SSOVEer her@------mcocmm e e a e e e e
[non-useful code] [Good, functional code]
The warriors becone:
Warrior 1 Warrior 2
[Good, functional code] [non-useful code]
[Good, functional code] [non-useful code]

Now, what do we have? One warrior which will never access the second part of it's code even though

12

it is useful, and a warrior that wiprobaebly die very quickly. | can see no reason to turn two perfectly
decent warriors into one decent warrior and one that is junk. For that reason, | believe not using
crossover is a good idea foorevarriors.

Results of Experiment

Population ’AB’

This was thepopdation run on the 5x86 machine. | ran 10§¢nhestions of 100 warriors. Using the
MARS ToumamentSchediler program | compared th@puations atintervals of 100, 150, 200, 250,
300, 375, 450, 525, 600, 725, 900, and 1§&0eertions These numbers were moreabitrary
conveniencethan planned setup. The numbegeheationswas set by how long | could leave the
computer running. Instead pfoviding complete reports, | have choserhighlight some of thalevel
opmentsthat took place during each run.

After 100genedtions the warriors had learned quite a bit. The first trick they learned to use was
self-spliting by use of the SPL opcode. This usually took the fofm

spl.a #x, y

It really doesn’t matter what numbers you put3plitting to a number addressed usingascally

causes the program to execute thatrudion and the one after it unless acted upon. If the one after it
is bombed, the SPL can survive by itself. The second trick was using onedettleentsor incre-
ments<, >, {, or } to bombconsedatively through the core using a moinstrudion like:

nmov. i $x, <-y

This combined with a SPL bombedckvardsthrough the core once before bombing itd#sically,
if the other warrior has avoided dying by way of Défatenent it wins because this warrior has put
DATSs over its own code.

One problem with the warriors at this point was the fact that they useatijnatedon a DATfollow-
ing their MOV line. This slowed down the bombing. They also usually had to progress through some
begiming code that really had little effect on the outcome except to tlemselvesdownmore.

After 150genedtions the warriors only learned one new trick. This trick waenplified by the
following line of code after the basic SRistrudion:

nmov. i {10, >-21

This piece of code is veigteresing. Theinstrudion that is used to bomb through the core is
constantlydecrenented sotherdore, it is usually aifferentinstrudion. For example, the first time
the warrior executes the MOV linehatveris pointed to by the A-field of thastrudion 10 ahead is
used. Then, it idecrenentedand thdnstrudion previousto that is used as the bomb. In an empty
core, this leads to bombing DA&verywheresince that is what the core is initially full of. And, since
thelocation that is bombed imcremented the DAT usually will get put over the enemy’s code.

More than that, thisoreclearis repeaing. The only reason for this is because the &rscuion
moves annstrudion with a B-field of 73 to the pointdocation for thepostion to be bombed. If this
pointer got bombed by anstrudion with a B-field number of less than 21, tesreclearwould

13

commit suicide. Barring that and getting a DAT thrown on it by the other programothigarriors
will bomb until all 8000 cycles are used up. This haadwariagejust in case the other warrior
survived the first pass. It also increases ovetalivability, as most of thereviouswarriorscommit
tedsuicide after bombing once through the core, they bonttsselvesand died.

For this warrior, it takes Bistrudionsto bomb linstrudion. It is a 33%aoreclear. It alsodecrenents
oneinstrudion per 3instrudions, which can help mess up other warriors.

After 200genedtions a major change happened. A warrior emerged which was 13% better than the
next warrior after a completmmparson Usually before, a margin of 1% was rare, but now one
warrior wasconsigently beating its brethren. Here are thactional (the parts that are used more than
once) of thiswvarrior:

spl . f # 9, {-39
nmov. i < 11, >-20
dat.ba < 10, @ 63

The reason this warrior was so much better has to do withldhenentof thepointers The MOV

line uses a pointer 11 ahead of it, while the DAT line (whécminates but stilldecranentg, uses one
only 10 ahead of it. Since the DAT lineilsmediately after the MOV line, the are using the same line
for their pointer. In effect, the MOV executelgcranening once, and then the DAT executdscre
mening a second time. This doesn’t improve the speed of the warrior, it is still 33%c, but it changes
the bomb used more frequently. By not simply copying data around, instead copying evdoceather
tion to everylocation at some other point, the odds of tmmentsurviving areconsicerably less.
Anotheradvanagethis warrior had was that it was a forwaateclear. All other warriors in this
popuation seem to béackvardcoreclears Appatently, the reasons this warrior scored well weren’t
justin it's code, but in the code of the rest of pogdation.

This was an amazingyoluionary jump. This tough little warriorepresentsthe fact that these warriors
can learn better ways to defeat their brethren. This one did it, and | have decided this warrior learned a
new way to defeat anything else present at that time. And to think, all this after onggriions

After 250genedtions nothing really new happenefipparently, theadvanagesevolved in therevi
ousround was lost wheaveryonegot it, and since it wasn'’t helping, it got mutated away. The
warriors were stilfepeaing coreclearswith a speed of 33%c.

After 300genedtions another verymportantpiece of code came up. The basic warrior still consisted
of a SPL and MOV line, but insteadtefminaing on a DAT, or jumping to randogonsedative
places through the core, this warrior evolve a line that made use of that line. It was tofoit@nthe

ing:

jp. f $ -1, #y

The first part is all that really matters. Insteadesfminaing that process, it jumpsackvardsl

instrudion, to the MOVinstrudion. This does help out speed, as it approaches an upper limit of 50%c
as more and more processes get caught in the MOV-JMP loop. It also halpsaility. Now if

either the first or ladunctioning line gets hit, the warrior stifunctions by contiruing its coreclear. If

the SPL line is hit, the processes keep jumping back to the MOV line. If the new JMP line is hit, the
SPL keepgprodudng new processes that keep tweecleargoing. So, instead of being completely
vulnerble to a single hit, this program can survive and &tiliction properly as long as the MOV isn't

hit. If the MOV is hit by a DAT, the SPL would keppodudng new processes that woukrminate

14

on the DAT, keeping ialive.

Now, after 375yeneations the warriors learned a new trick. Insteagdwdlving a new line of code,
they got rid of one. They kept the new JMBtrudion, but lost the SPinstrudion. There is one key
advanageto this. The speed is improved to bombing lmoetion every 2instrudionsinstead of 3.

This makes thefficiencyin the order of 50%c for the entire time. This is just slightly faster than the
best warriors from thpreviousround. Now, if you care to figure it out, a program with 5@8f6ic
ciencywill consigently win over a program with 33%c or 25%fficiency: It will even beat out a
warrior that has a speagproacing 50%c. Once again, ttemrenariors learned a new, fastetrat

egy, and tookadvarageof lessfortunatesiblings to gain more wins. Of course, now, ploguation
wassaturatedwith 50%c warriors. Since they won more, tlegraducedmore.Somehing new had to
develop, or readtagdion could occur.

Well, unfortunately, after 450 rounds, no nestrat@gyieshad evolved. The top 75 warrioepresented
adifferenceof less than 10%. Thaopuation had surely becoms&tagiant and all that could be hoped
for was a luckmutaion that somehow helped the warriors.

Well, fortunatelyfor thepopuation, somehing new did develop after 52feneetions The JMP to the
previousinstrudion was tossed away asmehing better was found. It didn’t decrease #itciency,

it didn’t make it less durable (or more durable), but itstichehing completelydifferent It took the
form of:

djn.a $ -1, < -9

This partiaular line, when executed, witlecrenentthe value of the A-field pointed to by the B field,
in this case, -9, andecrenentthe 'B’ field. In this casewhatkveris at the -9ocaion is alsodecre
mented so next time the same thing will be done togteviousinstrudion and so on. Next, control is
passed to thpreviousinstrudion, as the -1 eludes to. Sofunhdionsthe same as a JMP ifistrudion,
but adds the bonus décranentng a number. Whylecranen® Well, it can help. For instance if the
oppaents warrior consisted of thimllowing:

nov. i $10, <-1
jmp.a $-1, #0

You could defeat him by only using the Dilstrudion. This can happen because if tigical

A-field of the JMPinstrudion is decrenented it changes it to -2. The next time it is executed, your
oppaentwill jump back 2 instead of 1. If thereviousinstrudion is a DAT, the heerminates and

you win. If it isn't, let’s say it's a NOP (nopektion), just for fun, hisefficiencyis decreased to 33%c.
If yours is still at 50%c, then your chances of bombing him first are much higher than his against
bombing you.

After 600genestions, there was a major change as fastagegy. The fourfunctional lines of the best
programwere:

spl.b # 15, @62
add. x <- 28, { 34
nmov. i * 51, < -8
din.a $ -1, < -9

The first SPL lindunctionsthe same way that all of them have so far. The Aifrudion may at
first seem useless and timmensuning, but it is not. The MO\instrudion and the DJNnstrudion

15

function exactly like thepreviousversion except these two use the same pointer. At first, the MOV
bombs annstrudion, the DJNdecranentsthe A-field of thenstrudion before it, and the MOV bombs
the one before that. At first, the speed of this warrior may seem slow, but as more and more processes
are caught up in the MOV-DJN loop, the speed approaches an upper limit of 50%c. Since the two
primaryinstrudion use the same pointer, the speed at whichlibeyo/decrmentthe core isaactually
100%c. This only goes at this speed for 2/3 of the core before thediiDdion changes the DIN
string to jump back 2 instead of 1. This causes the speed to drop back to an upper limit &\v&spoc.
tually the ADDinstrudion also changes the pointer of the Dastrudion, causing it to start over and
decrenenteveryinstrudion backvardswhile the MOVinstrudion bombs everynstrudion back

wards In effect, this is called a seaffutaion. (Durham, Mark, et. al.) This warriactually does not
commit suicide like some earlier warriors. It runs sewvaifférentpasses at the core that all serve to
hopdully kill the oppment

After 725genestions no major changes happened. The next warrior used arstiBdion instead of
an ADD. It also never changed theintersof the MOV and DJNnstrudions

After 900genestions nothing had happened yet. The warriors hadn’t evolved much at all. | think this
may be due to using lomutaion rates in the final rounds like 4 aBd

After 1000genettions, there were still no neadvancenentseven with a high number of battles, 100.
The final best warrior'sunctional lineswere:

spl.b #-65, # 80
sub. f {-48, < 40
nov. i @ 54, < -8
djn.f $ -1, < -9

The onlyadvartiageof this warrior to thereviousone is use of numbers in the SUB fields that don't
stop thebackvardsbomb/decrmentcoreclearuntil it has almost bombed itself.

Population’AC’

This, again, was thgopuation run on the Pentium machine. | ran 1@@hegtionsof 100 warriors.
Using the MARSToumamentSchediler program | compared th@puations atintervals of 80, 160,
300, 500, 625, 800, 900, 1066énestions Again, these were moeebitrary numbers that allowed me
to check them before | wesbmavhere went to sleep, etc. Insteadgrbviding complete reports, |
have chosen thighlight some of thelevebpmentsthat took place during each run.

After 80 genestions the best scoring warrior used two of the $fdtrudionsdescribed above
consedctively. The nexinstrudion was aroriginal

nov. i # 28, > 29

This amounted to moving the curremstrudion 29instrudionsahead. The next time it is executed, it
would move 30nstrudionsand so forth. If any other warrior executed these, they would create more
MOV instrudions The nexinstrudion was also a MOV, but it workedifferently. It effedively was a
wasteinstrudion. It did nothing but move itself onto itself. The négtrudion was arinteresing

variation on the JMRnstrudion. It was:

16

jmp.ba > 27, <-47

This, consicering it comes Anstrudions after the MOVinstrudion, uses the same point&very

wherea MOV copies itself, the IMP does not jump to. It jumps only to places the MOV isn’t. Anytime
another warrior is bombed by this, MOV are copied over it. If it executgstandion not bombed,

so does this warrioBascally this leads to lots of ties. Thanks to this, this warrior won half the time
and tied the other half. Nothing in tlgeneetion could beat it very well as they all consisted of basic
SPL/MOV instrudionsthatterminatedon DATS.

This warrior wasactually a pretty crudeeplicator. Evertually, it would bomb itself with MOV
instrudions These would then be split to by the JstBtenent Evertually, this warrior was running
all 800possble processes, but they were in one third of the core. Why didn'tapisator break the
stone barrier? Well, for one thing it was slow. Goeplicators or papers, rely on havimgultiple
copies running at completetijffferentplaces in the core to win. This one could still be defeated by
even the slowest aoreclears

This wasactually, in hindsight, the closest thisxpermentcame tgprodudng areplicaor. Unfortu-
nately as the stones in tip@puation evolved into faster forms tfienselves this warrior did not.
This replicator had a speed of about 20%c.

After 160genestions, thepreviouswarriordisagpearedrom the scene as 33%c SPL/MOV/DAT
warriorsdominatedthe killing grounds. They easily killed the slogplicaor/bomber thatdtominated
the lastpopuation.

After 300genedtions the best warrior wasn'’t a three or two line warrior like the restfdieional
portionwas:

spl . x # 31, > 99
mul .ab $- 84, >-11
mul .ab { 31, @11
spl.ba > 96, $ 81
mil.b * 35, * 50
spl.ab #-61, *-70
nov. i > 26, > 7
nmod. X * 73, #-41

This warrior has two of thstardard SPLinstrudions, three more or less useless Midistrudions, a
SPLinstrudion that could help it tie with other warriors, olumctioning MOV instrudion, and a
terminaing MOD instrudion. It has a very low speed, but seems to do well because it can survive a
DJN attack or a couple DAT hits. Theajoiity of the other warriors in thigopuation seem to be
SPL/MOV/MOD or SPL/MOV/MOV/MOD. The warriors with two MOVs usually only only have one
that bombs with DATs and one that bombs vitiglelf.

Whateveradvartagethe winning warrior irgenesgtion 300 had, it was lost aftgenegtion 500, where
the warrior below reignesupreme:

spl . f # 99, $- 32
spl.ab # 75, @ 56
nov. i *-23, {-25
nmov. i # 28, > 50
nod. f * 77, >-16

The twin SPLinstrudions provide extradurability, where the twin MO\instrudions give an overall

17

speed of 18%c. The first MOV bombs DATs and the second bombs itself. the MOD is &srwtirer
naing instrudion. If a process survives the MOD, it is followed by a DIV which also hapdhsbil-
ity to terminate Apparently these warriors arevolving more durably than set 'AB’. Set 'AB’ evolved
primaily low durability, fast bombers, where these are evolve slow bombing, but highly durable
warriors.

After 625genedtions thefollowing warriordominated

spl.a #-66, <-39
nov. i $100, { -2
nov. i # -9, > 08
nmod. ba *-71, > 83

This warrior shed the extra SRistrudion in favor of speed againdtirebility. It still contains the
MOV instrudion that only moves itself. | really wonder why it doesn’t evolve a second MOV that
functionslike the first. The MODOnstrudion is the typicaterminaor for this testset.

After 800genestions, thefollowing warriordominated

spl . f #- 68, <-48
nmov. i <-62, > 4
nmov. i <-49, > 3
dat . x < 46, $ 52

This warriorfunctionswith a speed of 50%c, bombipgimaily with DATs orwhatkverlies at the

pointer. The DATinstrudion insuregerminaion where the MOD did not. The twin MOMstrudions

both use the same pointer, so the core is bombed forward at twice the rate the MOVs would if the used
sepaatepointers In other words, instead of one line of DAT boniditowing the other, they are

placed one after another, halving the time it takes to bomb ovepgment

After 900genedtions the warrior changedltle:

spl . f #- 68, <-74
nmov. i <-62, > 4
nmov. i @ 25, > 3
dat.b * 23, > -3

The only major change to this warrior is the fact that the second M&Mdion uses the same DAT
location to bomb with unlesiterferedwith, unlike thepreviousversion which changed upexecu
tion.

After a final run to 100@eneetions, thefollowing warrior came out otop:

spl . x # 61, <-75
nov. i $-65, > 4
nmov. i > 57, > 3
jmz.a $ -2, @94

This warrior bombs more or less like the last one, except it bombs with asgg@edcing an upper
limit of 66%c. This is due to the JMHAstrudion which causes the processes to jump back to the first
MOV instrudion. As more and more processexumulate here, the speed improvésvertually, if a
nonzeranstrudion is bombed to postion 94 lines after the JMZ line, the processes willwiraever
comes after thigstrudion. In most of these types of warriors, this was and#éreninaing instrudion

18

which kept the speed below a new upper limit of 50%c.

Comparison of the Populations

The final warriors from eactenestion were compared. The 'AB’ warrioonsisently beat the 'AC’
warriors. This shows a higher levelsdphigicdion in the SPL/SUB/MOV/DJN watrriors than in the
SPL/MOV/MOV/JMZ. In general, the warriors in the AB®puation went for speed rather thauora
bility whereas the warriors in the Af®puation went fordurability rather than speed.

A lot of early evolvedtoraevarriors neverdevebpedbeyond an imp or a single DJdhstrudion. An
impis:

nov. i $0, $1

This warrior copies itself one line ahead, and then goes to the next line. If you can find it, it is easy to
kill. It also has nmffensive capaility, it can only tie. A single DJstrudion warrior would look
like this:

din.f $o0, <1

This kind of warrior onlydecrenentsinstrudion, which some warriors can survive, whereas this
warrior issuicidal after 800 cycles. Another kind efoluionary dead-end | have heard of is a hider
like:

jmp.x $0, $0

This little warrior just sits there. Hidffensive anddefersive capaility is zero. Now, my warriors
never reached theswoluionary dead-ends. The evolved, in my opinion, mtatther.

However, it should also be noted, all of the warrat@gsebpedwere stone or rock types. None of them
scanned fooppaents and noneeplicatedthenselves | haven't heard of any evolvedrevarrior

brealing this barrier. | think if it does happen, it will be a paper that evolves. This would be due to the
fact that papers beat stones, so they would wirrgmaducemore, whereas if a scissor evolved in a
stonepopduation, it would be killed off.

When | did a testonsising of the five best final warriors from eapbpuation, two papers, twscis

sors and four stones, the results showed how these evolved warriors were stilnpettive with

the best human written warriors. The papers came in first and secondstlisoig stone, another

scissor, the three other stones, and then the evolved warriors. However, it should be noted that one of
the stones, which was written with the latgsatayiesin mind, barely beat the best of the evolved
warriors. Many thanks go to those that gave me the code for their human written vimchimiag

Philip Kendall, Brian Haskin, David Matthew Moore, and Franz.

| alsosubmited some of the best warriors to the baby hill. None of them were good enough to make it.
However,compaimng tests of earlier warriors against the best of 1§€@eationswarriors showed an
improvementof almost doubling the score. Of course, the bottom warrior on the hill also had twice the
scores of the best evolve warrissubmited

19

Conclusion

The bigquesion here is did these warriors learn. The answer is yes. These warriors made serious
improvementstowardlearring to survive. Some of thestrudionsthey used, like using a DJN
instrudion to loop instead of a simple JMP were and are still used by gwedarriors today. Also,
some warriors had two sectionsexfecuing code, whichdramatcally improve chances of not being
killed. In my opinion, theseorewarriors learned quite a bit in only 10@@negtions They were
constantlyimproving uponthenselves up until the last couple hundrgdnestions. | believe this was
partly my fault, as | kept theautaion rates lower for the final rounds. | think, to a point, a higher
mutdion rate helps more than it hurts.

Even though the results may not be great, | believe they are aagceaplish for these evolvedore
warriors. | don’t know how mangeneetionsit would take for them to beompeitive with warriors
written by humans. However, | do believe by what they’ve done in §808stions proves that it
may bepossble. These warriors went from nothing but a single rand@wtiudion to rathercompli
catedwarriors that used evendvaragethey could to win.

Future Work

| believe there are two things keeping evoleedavarriors from beingcompeitive with
human-written warriors. The first is the lack afigersity scoringprinciple like the Rank-Space
method. (Winston, Patrick Henry, 518) With this helpriwardng diversity, | believe the stone
barrier could be broken. Also, | believe the second thagesaryis procesortime. In hisexper-
mentswith satelite-control programs, Brian Howley used a fastrkstaion that took 83 hours of
straightcompuation to evolve a prograrcompaable to human-written programs. (Gibbs, W. Wayt,
2) If someone could either gain use of or useekstaion or asupecormputer, | believe this would
also help the results. It would also take some nrajriting of ga_war.c to test fativersity as well
as fitness in @opdation, which would also slow down tlempuations But, then again, faster
procesorsand hard drives could be the answer.

Appendix A

Thefollowing is a briefdescripion of thecorewvarscode set. It was put together from pieces of two
textfiles, which, I am sorry, | do not know where they came from. This is meant to be used as a very
general guide tandestandng the concepts in thigaper.

Opcodes:
DAT term nate process
MoV nmove fromA to B
ADD add Ato B, store result in B
SUB subtract AfromB, store result in B
MUL multiply A by B, store result in B
DV divide B by A store result in Bif A<>0, else ternmnate
MOD divide B by A store remainder in Bif A<>0, else termnate
JMP transfer execution to A
JMZ transfer execution to Aif Bis zero
JWN transfer execution to Aif B is non-zero
DIN decrenent B, if Bis non-zero, transfer execution to A
SPL split off process to A
SLT skip next instruction if Ais less than B
CwP same as SEQ

SEQ Skip next instruction if Ais equal to B

20

SNE Skip next instruction if Ais not equal to B

NOP No operation
LDP (*) Load P-space cell Ainto core address B
STP (*) Store A-nunmber into P-space cell B

(*) LDP and STP arenstrudionsused inaccesmg a new feature aforevars P-space. Because this
paper focuses on warriors for the baby core with a limit dh&0udions thesenstrudionswere not
used in any warrior8asically, the baby warriors cannot fit proper P-space routines inins2Qc
tions Theinstrudionsareprimaily meant for normal size cores with limits of li68trudions

Modifiers:

Instructions read and wite A-fields.

Instructions read and wite B-fields.

Instructions read the A-field of the A-instruction and the B-field of the B-instruction and wite to B-fields.

Instructions read the B-field of the A-instruction and the A-field of the B-instruction and wite to A-fields.

Instructions read both A- and B-fields of the the A and B-instruction and wite to both A- and B-fields (Ato A and B to B).

Instructions read both A- and B-fields of the the A- and B-instruction and wite to both A- and B-fields exchanging fields (Ato B and Bto A).
Instructions read and wite entire instructions.

“xmpgws

Addressing modes:

i mredi at e

di rect

indirect using B-field

predecrenent indirect using B-field
postincrenent indirect using B-field
indirect using A-field

predecrenment indirect using A-field
postincrenent indirect using A-field

inadianl *V/\@%#

The complete proper form for a singestrudion in corewvarsis:

(Opcode) (Modi fier) (Addressing Mdde) Number, (Addressing Mde) Nurber
I [I
\ / \ /

A-field B-field

Reference List

Boer, Jason. (1997). ga_warmdtp://www.avalon.net/~jboer/projects/corewar/ga_war.c.

An excelent piece of C code to evoharaevarriors. The helpgntrodudion section is very helpful and
the code is veryeadble

Boer, Jason. (1997). Jason’s Corewar Project Page.
http://www.avalon.net/~jboer/projects/corewar/corewar.html.

A very nicehomepagedevoted tevolving corevarriors using his own code. Lots of warriors that he
has evolved, as well as their results. Also include ideas on the best settings to use to develop better
warriors.

Dawkins, Richard. (1989). The Selfish Gene. (2nd. ed.). Oxford: Okfoieersity Press.

An excelent book which details manfnctions of geneics from the gene-level instead of timelivid-
ual. Good reading and brings up several waysluion could work to producdiversity among other
things.

21

Dewdney, A. K. (1988). The Armchair Universe: Brploration of Computer Worlds. New York: H.
Freeman.

This is wherecoravarsbegan. Thipublication is actually Dewdney'’s firstarticlesput together from
their original publication in Scienific American Dewdney proposes the rul@sstrudions and gives
the mostreadableintrodudion to corevarseven though many things have changed.

Durham, Mark., et. al. (1998). Core War Frequently ASRedgions (rec.games.corewar). 1-22.
http://www.mcs.vuw.ac.nz/~amasricorevardcorewar-fag.html.

An excelent help guide for anyoniaterestedin desigring, testing, and putting their warriors against
others. Also provides many links to warrior arelvsleter archives and personabmepagesof many
current people in theorewarsfield.

Genetic-Programing.org Home Page. (1998)ttp://www.genetic-programing.org/.

This contains the topicspealers andlocaion of the next GenetiProgranming Confeence Also
has links to where to submit your papers for tuisfelence and links to some of the mopeominent
members of the genefarogranming field.

Gibbs, W. Wayts. (1996Rrogranming with Primordial Ooze.Scienific American 1-3.
http://www.sciam.com/1096issue/1096techbus3.html.

A summary of what has been done in recent years with getgtiithms Containsexanplesof ways
programs made by genetitgaithms have provedhenselvesequal to or better than human written
programs.

Goldberg David E. (1989). Geneti&lgorithmsin SearchQptimization, and Machind_earring.
Amstedam Addison-Wesley.

Theofficial guide to using genetalgaithms Contains dozens of samples and code to do your own
tests with. Also written astextook so it contains very cleaxplanations of everything.

Koza, John. (1998). John Koza’s Home Pdugig.://www-cs-faculty.stan
ford.edu/%7Ekozal/index.html#anchor5393849.

An excelentlist of resources, contacts, current and future projects frofiordr@nnerin the genetic
progranming field. Thishomepagecontains hundreds if nthousandsof links all related to Genetic
Progranming and what is being done wiih

Langdon, W. B. (1997). GenetRrogranming Bibliography.
http://www.cs.bham.ac.uk/~wbl/biblio/gp-bibtiraphy.html.

A comprdnersive list of papers that have been done using gepetigranming. If it's been done, I'm
pretty sure it is here. They claim over 800 resources, and | bélieve

Perry, John. (1987?). Core WdBgneics: TheEvolution of Predaion. 1-12.
http://www.koth.org/evoling_warriors.html.

The first paper done using gendaigaithmsto evolvecoravarriors. Although it was done awhile
ago, and many things have changed, it is stihxselentintrodudion to evolving corevarriors,
although not very good atplairing corevars

22

Peters, James A. (1959). Classic Pape€eaneics. Englevood Cliffs, N. J.:Prerice-Hall.

A colledion of papers that form the basis figneics today. Containgventhing from basics like
Gregor Mendel’s Plartlybridizaion to the genetic results of atomic bombs of Hiroshima and
Nagasaki.

Winston, Patrick Henry. (1993Artificial Intelligence (3rd. ed.). Milan: Addison-Wesle$05-528.

An excelenttextbook contairing a complete overview of th&rtificial Intelligencefield. Contains lots
of exanplesandprodems Brief section olearring by Simuating Evolution which is a very basic
introdudion to genetialgaithms

Bibliography
Boer, Jason. (1997). ga_wardtp://www.avalon.net/~jboer/projects/corewar/ga_war.c.

An excelent piece of C code to evoleorewvarriors. The helpntrodudion section is very helpful and
the code is veryeadble

Boer, Jason. (1997). Jason’s Corewar Project Page.
http://www.avalon.net/~jboer/projects/corewar/corewar.html.

A very nicehomepagedevoted tevolving corewvarriors using his own code. Lots of warriors that he
has evolved, as well as their results. Also include ideas on the best settings to use to develop better
warriors.

Dawkins, Richard. (1989). The Selfish Gene. (2nd. ed.). Oxford: Okfoieersity Press.

An excelent book which details manfnctions of geneics from the gene-level instead of timelivid-
ual. Good reading and brings up several waysluion could work to producdiversity among other
things.

Dewdney, A. K. (1988). The Armchair Universe: EBrploration of Computer Worlds. New York: H.
Freeman.

This is wherecorevarsbegan. Thipublication is actually Dewdney'’s firstarticlesput together from
their original publication in Scienific American Dewdney proposes the rul@sstrudions and gives
the mosteadableintrodudion to corevarseven though many things have changed.

Dewdney, A. K. (1990). The Magic Machine:Handook of Computer Sorcery. New York: H.
Freeman.

More updates and negroductsof coravarsappear in thisomplation. Also details on the firdhter-
naional Core Wars Societioumamentand the better scoring warriors.

Durham, Mark., et. al. (1998). Core War Frequently ASRedgions (rec.games.corewar). 1-22.
http://www.mcs.vuw.ac.nz/~amasricorevardcorewar-fag.html.

An excelent help guide for anyoniaterestedin desigring, testing, and putting their warriors against
others. Also provides many links to warrior amalvsleter archives and personabmepagesof many
current people in theorewarsfield.

23

Genetic-Programing.org Home Page. (1998)ttp://www.genetic-programing.org/.

This contains the topicspealers andlocaion of the next GenetiProgranming Confeence Also
has links to where to submit your papers for tlusfeience and links to some of the mgpeominent
members of the genefarogranming field.

Gibbs, W. Wayts. (1996Rrogranming with Primomdial Ooze.Scienific American 1-3.
http://lwww.sciam.com/1096issue/1096techbus3.html.

A summary of what has been done in recent years with getgtiithms Containsexanplesof ways
programs made by genetitgaithms have provedhenselvesequal to or better than human written
programs.

Goldberg David E. (1989). Genetiglgorithmsin SearchQOptimization, and Machiné_earring.
Amstedam Addison-Wesley.

Theofficial guide to using genetalgaithms Contains dozens of samples and code to do your own
tests with. Also written astaxtook so it contains very cleaxplanations of everything.

Koza, John. (1998). John Koza’s Home Péup..//www-cs-faculty.stan
ford.edu/%7Ekoza/index.html#anchor5393849.

An excelentlist of resources, contacts, current and future projects frofoter@nnerin the genetic
progranming field. Thishomegagecontains hundreds if nthhousandsof links all related to Genetic
Progranming and what is being done with

Langdon, W. B. (1997). GenetRrogranming Bibli ography.
http://www.cs.bham.ac.uk/~wbl/biblio/gp-bibtjraphy.html.

A comprénersive list of papers that have been done using gepetigranming. If it's been done, I'm
pretty sure it is here. They claim over 800 resources, and | bélieve

Perry, John. (1987?). Core Wdagneics: TheEvolution of Predaion. 1-12.
http://www.koth.org/evoling_warriors.html.

The first paper done using gendigaithmsto evolvecorevarriors. Although it was done awhile
ago, and many things have changed, it is stihxaselentintrodudion to evolving corewvarriors,
although not very good atplairing corevars

Peters, James A. (1959). Classic Pape€eaneics. Englevood Cliffs, N. J.:Prerice-Hall.

A colledion of papers that form the basis figneics today. Containgventhing from basics like
Gregor Mendel’s Plartlybridizaion to the genetic results of atomic bombs of Hiroshima and
Nagasaki.

Winston, Patrick Henry. (1993Artificial Intelligence (3rd. ed.). Milan: Addison-Wesle$05-528.

An excelenttextbook contairing a complete overview of th&rtificial Intelligencefield. Contains lots
of exanplesandprodems Brief section olearring by Simuating Evolution which is a very basic
introdudion to genetialgaithms

24

geovisit();

25

	
	Ryan Coleman

	Learning By Simulating Evolution Using Corewars
	Abstract
	Background
	Evolution
	Corewars
	Corewars Lingo

	What's been done with Evolutionary Computing Before
	Non-corewars
	Corewars

	Why Corewars
	Setup of Experiment
	Results of Experiment
	Population 'AB'
	Population 'AC'
	Comparison of the Populations

	Conclusion
	Future Work
	Appendix A
	Opcodes:
	Modifiers:
	Addressing modes:

	Reference List
	Bibliography

