MY FIRST COREWAR BOOK
by Steven Morrél

PREFACE

This book is arintrodudory colledion of corewar warriors witcommerary. It assumes aacquain
tancewith the ICWS '88 redcode language (See M.Durhgot@ial. 1 andtutorial.2 for details).
Unlessothewise noted, all redcode is written in ICWS ’88 and is designed éaresize of 8000,
process limit 8000. Altlocumentsreferred to in this text amvailableby anonynousFTP at
ftp.csua.berkiey.eduin one of thesubdredories of pub/corewar/.

After a briefintrodudion, each chapter presents warriors by subject. | ploatificateon the merits of
these various warriors and give some hintstarcestil implemertation. | mention credits and give
referencedo other warriors worth furtheénvedigation. Unlessothemwiseindicated these warriors are

archived i in the redcodediredory.

Thepresetation of each warrior follows roughly the same format. First,phenetersof the warrior

are given. These include the name, author, attack spiedive size,durability, andeffediveness

and score against tflizzaHill] Theeffedive size is the size of thexecuing code during the attack
phase, taking into accourdgererative code. Next, self-contained source code is given, followed by a
brief descrigiion of the warrior. Finally, a detailggcmical descrigiion of how the warrior runs is

given.

| hope that this helps. If you hageegions or comments, send themrwrrell@math.utah.eduhere
you can reach me until June,1994.

Steven Morrell

Chapter 1. Imp-Rings

On October 14, 1992, A.lvner posted a warrior teatlutionizedthe game of corewar. "The IMPire
strikes back" scored about 170 on the Intel hill and only suffered 10% losses, putting it firmly in first
place. A.lvner had invented a way to kill other programs with imps -- the world’s first imp-ring.
D.Nabuovskyimproved the launch code a bit by making an imp-spiral and adding a stone in his
"Impressive’, which lost only 2% and scored 195 when it started on the hill (for mfmenation on
stones, seehapter?). Since that time, most warriors on the hill have either been imgEnoghing

hostile to imps.

This chapter deals with imps, from the basic imp proposed by A.K.Dewdneyarigh®l Scienific
Amelicanarticlesto the modern-day imp-spiral we see ammpmentof manysucceskul warriors.

ftp://ftp.csua.berkeley.edu/pub/corewar/documents/tutorial.1.Z
ftp://ftp.csua.berkeley.edu/pub/corewar/documents/tutorial.2.Z
ftp://ftp.csua.berkeley.edu/pub/corewar/redcode/warrior10.tar.Z
http://www.ecst.csuchico.edu:80/~pizza/koth/

--1--

Nanme: Wi t
Speed: None
Si ze: 1
Durability: Strong
Ef fecti veness: None
Scor e:

wait JMP wait
end wait

Wait isthe simplest warrior. Its small size makes it difficult to locate. However, it has no attack, so it
only winsif the enemy program self-destructs. We shall be using this program for fodder.

-2

Name: I mp

Aut hor : A. K. Dewdney

Speed: 100% of c¢ (sequential)
Si ze: 1

Durability: Strong

Ef f ecti veness: Poor

Scor e:

imp MOV inp, inmp+l
end inp

Imp presents the enemy with a small, moving target that will not die without a direct hit. It tiesalot,
and is vulnerable to the imp-gate.

HOW IT WORKS: When Imp isloaded and before it executes, it looks like this:
MV 0,1 (1)

(The (1) shows which instruction will execute on the first cycle.) When process (1) executes, it first
copiesitsinstruction to the next address and then moves to the next instruction:

MV 0,1 ;This is the original.
MWV 0,1 (2) ;This is the copy.

Process (2) now executes. Since all addressing is relative, the process copiesits instruction to the next
address and advances.

MoV
MoV
MoV

O O O

1
1
,1 (3) ;This is the second copy.

And so it goes, overwriting anything in its path with MOV 0,1 instructions. So when it encounters
enemy code, it replaces the enemy code with MOV 0,1 instructions, turning the enemy processes into

imps. Note that although the enemy code is gone, the enemy processes live on, so imps do not win
unless the enemy code self-destructs.

--3--

Nanme: Inmp Gate
Speed: None

Si ze: 1
Durability: Strong

Ef fecti veness: Excellent against inps, Extrenely Poor against others
Scor e:

gate equ wait-10
wait JMP wait, <gate
end wait

Imp Gate waits and destroys imps that happen to pass 10 instructions before it. It is seldom overrun by
imps and its small size makesit difficult to locate. The imp gate is defensive by nature, and will not
win against a stationary enemy unless this enemy self-destructs.

HOW IT WORKS: The process running at _wait_ jumpsto the A-value of this command, i.e. back to
wait. However, it also decrements the B-field of _gate . Thus, the B-field of _gate is decremented
every turn. When an enemy imp comes by thisiswhat happens:

MV 0,1 (x) ;here cones the inp
DAT 0, -5 ;here is the gate

The inp copies itself and advances onto the gate:

MOV 0, 1

MV 0,1 (x+1) ;here is the gate
The gate decrements:

MOV 0, 1

MOV 0, 0 (x+1) ;here is the gate
Theimp copies thisinstruction to itself (effectively doing nothing) and advances, falling off the end:
MOV 0, 1
MOV 0, 0 ;here is the gate
(x+2)
The gate decrements again (but the damage has aready been done.)
MOV 0, 1
MOV 0, -1 ;here is the gate
(x+2)

The enemy process executes an illegal instruction and dies.

--4--
Narme: Wor m

Speed: 25% of ¢ (linear)
Si ze: 1.75

Durability: Very Strong

Ef fecti veness: Poor

Scor e:

launch SPL b

SPL ab

aa JWP imp

ab JWP i np+1
b SPL bb

ba JWP i np+2
bb JMP i mp+3

imp MOV i nmp, i mp+1
end | aunch

Worm is asymbpbtic colledion of imps. The onlywulnerble parts of the worm is the taiistrudion

and theinstrudion about to execute, hence thiéedive size of 1.75 (25% of the time, the tiamstruc
tion is theinstrudion about to execute.) It is vedijffi cult to kill, because each imp must be disposed
of individually. However, it is stilivulnerble to imp gates. As with Imp, Worevemwritesenemy

code but preserves enemy processes.

HOW IT WORKS: First, we launch the worm using a binary launch:

SPL
SPL
JMWP
JMWP
SPL
JMWP
JMWP
MoV

(1)

oSrAdDOODdA
POOOOOOO

The first process splits into processes (2) and (3):

SPL
SPL
JMP
JMP
SPL
JMP
JMP
MoV

(2)

(3)

ehrbdOODNMSA
POOOOOOO

Process (2) splits into processes (4) and (5):

SPL
SPL
JMP
JMP
SPL
JMP
JMP
MoV

(4)
(5)
(3)

orArdbOODdA
roOooooooo

Process (3) splits:

SPL
SPL
JWP
JWP
SPL
JWP
JWP
MoV

oSrAEdDOODdA
POOOOOOO
—
o1
N—r

Process (4) jumps:

SPL
SPL
JMWP
JMWP
SPL
JMWP
JMWP
MoV

(5)
(6)
(7)
(8)

Processes (5), (6) and (7) jump:

oSrAdDOODdDA
POOOOOOO

SPL
SPL
JMP
JMP
SPL
JMP
JMP
MoV

orprdbOoODdMSA
POOOOOOO

(8)
(9)
(10)
(11)

The worm will now start crawling though memory. Note that if processes (9), (10) or (11) executed
right now, they would execute an illegal instruction and die. But process (8) executes, copying the
MOQV instruction to where process (9) is going to execute:

SPL
SPL
JWP
JWP
SPL
JWP
JWP
MoV
MoV

corArdOGONA

0
0
0
0
0
0
0
1
1

(9) (12
(10)
(11)

Now process (9) executes, copying the MOV instruction to process (10).

SPL
SPL
JMP
JMP
SPL
JMP
JMP
MoV
MoV
MoV

(12)
(10) (13)
(11)

0
0
0
0
0
0
0
1
1
1

Soeor~rprdOONA

And after (10) and (11) have executed, the worm has crawled forward an instruction, leaving a dimy
MOV 0,1 trail behind.

SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (12)
MOV 0,1 (13)
MOV 0,1 (14)
MOV 0,1 (15)
--5--
Nare: Ri ng
Speed: 100% of ¢ (nostly linear)
Si ze: 1
Durability: Aver age
Ef fecti veness: Fair
Scor e:
c JMP i mp- 2666
I aunch SPL ¢
SPL i np+2667

i mp MOV 0, 2667
end | aunch

Ring is a symbiotic collection of three imps distributed through core. It has the capability to destroy
enemy processes it overruns, if the enemy is running only one or two processes. This code will run
correctly only in a coresize of 8000, although the constants may be tweaked to run in any coresize not
divisible by 3. Ring is an example of a 3-pt imp.

HOW IT WORKS: The launching code is avery small binary startup:

JMP -2663, 0

SPL 0, 0 (1)
SPL 2668, O
MOV 0, 2667

The first process splits:

JWP -2663, 0 (3)

SPL 0, 0
SPL 2668, 0 (2)
MOV 0, 2667

The second process splits:

JWP -2663, 0 (3)

SPL 0, 0
SPL 2668, 0

MoV 0, 2667 (4)
(5) ;this location is 2667 instructions after the inp

The third process jumps:

MOV 0O, 2667 (4)
(5) ;this location is 2667 instructions after the inp
(6) ;this location is 2667 instructions after process (2)

Now the fun begins. Process (4) executes, copying the imp instruction to process (5) and becoming
process (7):

MOV 0, 2667
(7

MOV 0, 2667 (5)
. (6)
(5) executes, copying the imp instruction to process (6):

MOV 0, 2667
(7)

MOV 0, 2667
(8)

MOV 0, 2667 (6)
And now (6) executes, copying the imp instruction back to process (7):

MOV 0, 2667
MOV 0, 2667 (7)

MOV 0, 2667
(8)

MOV 0, 2667
(9)

The cycle starts all over again, and the ring creeps forward.

Let’s see what happens when Ring fights Wait (Program 1). Wait executes IMP 0,0 until eventually
Ring overwrites this instruction with MOV 0,2667.

MOV 0, 2667 (1)
Wait executes this instruction and advances;

MOV 0, 2667
(2)

Since Ring takes 3 cycles to move the next command into place, Wait’ s process now executes an
illegal instruction and dies.

So Ring dowly advances through core, and if the enemy isrunning a single process, it falls off the end
of theimp ring.

--6--

Nane: Spira

Speed: 37.5% of ¢ (nostly |inear)
Si ze: 1.875

Durability: Very Strong

Ef fectiveness: Fair

Scor e:

step equ 2667
launch SPL 8
SPL 4
SPL 2
JMP i mp
JMP i np+step
SPL 2
JMP i np+(step*2)
JMP i np+(step*3)
SPL 4
SPL 2
JMP i np+(step*4)
JMP i np+(step*5)
SPL 2
JMP i np+(step*6)
JMP i np+(step*7)
i m MOV 0O, step
end | aunch

Spiral crosses theurability of a worm with theeffedivenessof a ring. Spiral isesigantto most
convernional attacks, and since it is an 8-process imp-ring, it kills any eneowgivritesif the
enemy has less than 8 processes running. Thevalgmble parts of the spiral are the tail and the
process that is currently running. Spiralisnerble to imp gates, however.

HOW IT WORKS: After a binary launch, the processes are arranged as follows:

MOV 0, 2667 (16)
(19) ;this process is 2667 instructions after process (18)
(22)

(17) ;this process is 2667 instructions after process (16)
(20)
(23)

(18) ;this process is 2667 instructions after process (17)
(21)

Now the spiral worms along: (16) copies the imp to (17), which copies it to (18), and so on. All the
processes advancaristrudion as this happens, and then the imp-padsisigudions begin again.

A step-by ste@nal/sis of how imp gates destroy spirals would be lengthywamkeessaily complr-

cated The key idea is this: The imp gate is constantly beindified. As the impoverunsthe imp

gate, no impnstrudionsare left intact to copy to the next processesdion. This next process

executes an illegahstrudion and dies. This scenario repeats until the entire spiral moves through the
imp gate andlisintegrates

-—7--

Nane: Gate Crashing Spira

Speed: 12.5% of ¢ (nostly |inear)
Si ze: 5. 875

Durability: Very Strong

Ef fecti veness: Good

Scor e:

stepl equ 2667

step2 equ 2668

start SPL | nchl
SPL | nch3

I nch2 SPL
SPL
SPL
JVP i np2+(st ep2*0)
JVP i np2+(step2*1)
SPL 2
JVP i np2+(st ep2*2)
JVP i np2+(st ep2*3)
SPL 4
SPL 2
JVP i np2+(st ep2*4)
JVP i np2+(st ep2*5)
SPL 2
JVP i np2+(st ep2*6)
JVP i np2+(step2*7)

N b 0o

I nch3 SPL
SPL
SPL
JWMP i mp3+(step2*0)
JWP i mp3+(step2*1)
SPL 2
JVP i mp3+(step2*2)
JWVP i mp3+(step2*3)
SPL 4
SPL 2
JVP i mp3+(step2*4)
JWMP i np3+(st ep2*5)
SPL 2
JWMP i np3+(st ep2*6)
JVP i mp3+(step2*7)

N b 0o

I nchl SPL
SPL
SPL
JVP i npl+(stepl*0)
JWVP i npl+(stepl*l)
SPL 2
JVP i npl+(stepl*2)
JVP i npl+(stepl*3)
SPL 4
SPL 2
JVP i npl+(stepl*4)
JWVP i npl+(stepl*5)
SPL 2
JVP i npl+(stepl*6)
JVP i npl+(stepl*7)

N b 0o

impl MOV 0O, stepl
DAT #0
DAT #0
DAT #0
i mp2 MOV 0, st ep2
MOV 0, st ep2
i mp3 MOV 0, st ep2
MOV 0, st ep2
end start

Gate Crashing Spiral is a collection of three spirals that work together to kill imp gates. Thefirstisa
standard imp spiral and the other two are dightly modified, interleaved for greater protection against
split bombs. The large size of its launch code makes it vulnerable to fast attacks.

HOW IT WORKS: Each spiral hasits own binary launch. The first spira launches first and crawls
forward an instruction by the time the other two spirals have launched. Core then looks like this (after
resetting the counter for clearer exposition):

MOV 0, 2667 :This is label inpl | MOV 0, 2667
MOV 0, 2667 (17) MOV 0, 2667 (18)
MOV 0, 2667 (20) MOV 0, 2667 (21)

MOV 0, 2667
MOV 0, 2667 (19)
MOV 0, 2667 (22)

I
| |
DAT #0,#0 (23) [(24) |
MOV 0, 2668 (1) ;This is label inmp2 | |
MOV 0, 2668 [(2) |
MOV 0, 2668 (9) ;This is label inmp3 | | (3)
MOV 0, 2668 [(10) |
(4) I I (11)
I (5) |
(12) I I (6)
I (13) |
(7 I I (14)
I (8) |
(15) I I
I (16) |

The imps then move forward via the usual instruction juggling.

When a gate crashing spiral overruns a gate, the second or third spirals hit first:
MOV 0, 2668 (x) ;inp gate here

The gate decrements:

MOV 0, 2667 (X)

The wounded spiral copies thisinstruction 2667 ahead:

MOV 0, 2667
(x+24)

MOV 0, 2667

The second and third spirals now fall off the end and die, and then the first spiral hits the gate:
MOV 0, 2667 (y) ;inp gate here

MOV 0, 2667 (y+1)

The gate decrements:

10

MOV 0, 2666 ()
MOV 0, 2667 (y+1)

Process (y) executes, and can't copy the imp to process (y+1), but this is okay, because process (y+1)
executes the immstrudion from the two spirals gone before. The spiral crawls through the gate and
goes on to kill the enemy processes.

--8--
Nane: Ni mbus Spiral

Speed: 50% of c¢ (somewhat |inear)
Si ze: 1.992

Durability: Very Strong

Ef fectiveness: Fair

Scor e:

step equ 127
inm MOV 0, step

launch SPL 1 ; 1 process
SPL 1 ;2 processes
SPL 1 ;4 processes
SPL 1 ; 8 processes
SPL 1 ; 16 processes
MOV -1,0 ;32 processes
SPL 1 ; 63 processes

SPL 2 ; 126 processes
spread JMP @pread,inp

ADD #st ep, spread
end | aunch

Nimbus Spiral launches a 63-point spiral with two processes per point. Because a binary launch would
exceed thd 00-instrugion limit, Nimbus Spiral uses what is called a Nimbus-type launch. The code
for this type of launch isbviously smaller, but the time it takes to launch spirals is roughly doubled.

HOW IT WORKS: Each SPL 1 command doubles the number of processes acting in tandem at the
nextinstrudion. The first process that executes the MOV -1,0 command does not split, sukisa|
guentprocesses execute a SPL 1 command. Hence, leefecdion of the SPL 2 command, core

looks like this (with counter reset):

MoV
SPL
SPL
SPL
SPL
SPL
SPL
SPL
SPL
JMP
ADD

N
~

[eNoNeoloNoNeNoNoll o]

(1)-(126)

#@Ml—\l—\l—\l—\l—\l—\l—\o
iy Ao e e
!
©

N -

N
'

[EnY

After execuion of the SPL 2 command:

11

MoV
SPL
SPL
SPL
SPL
SPL
SPL
SPL
SPL
JMWP
ADD

N
~

ghPPRPPRPPRPRPRO
Cooo0o0o0O0OR

HH

[HN

N’:
©

Qdd processes
7,-1 Even processes

We reset the processes again. Process (1) now executes, jumping to the location of the B-operand of
the IMP instruction:

MOV 0, (253) ;this cane fromprocess (1)
SPL 1,

SPL 1,

SPL 1,

SPL 1,

SPL 1,

SPL 1,

SPL 1,

SPL 2,

JMP @, - Qdd processes greater than 1
ADD #127 -1 Even processes

12
0
0
0
0
0
0
0
0

Process (2) now executes, adding 127 to the B-operand of the IMP instruction:

MOV 0, 127 (253)

SPL 1,0

SPL 1,0

SPL 1,0

SPL 1,0

SPL 1,0

SPL 1,0

SPL 1,0

SPL 2,0

JMP @, 118 Qdd processes greater than 1
ADD #127,-1 Even processes greater than 2

(254) ;this cane from process (2)

And it continues. Process (3) jumps to a new location. The even processes modify the jump vector, and
the odd processes do all of the jumping. By the time process (127) is ready to execute, we have the
following situation:

MoV
SPL
SPL
SPL
SPL
SPL
SPL
SPL
SPL
JMWP
ADD

27 (253)
(379)

gdhPrPRPPRPPRPRPRPO
Coooo0o0o0OoR

HH

127,-1
Even processes

Qdd processes broadcast throughout core

12

The odd processes form an imp spiral and the even processes execute illegal instructions and die,
leaving just the spiral to crawl through memory.

--Conclusion--

Two questions beg to be answered: When should you add an imp to your favorite warrior, and how do
you kill imps?

Most of today’ s fighters have some resistance to imps, so pure imp programs seldom are successful.
But imps are easy to add to code that has multiple processes running, like today’ s stones, vampires, or
paper. The most successful imp warriors use most of their process time in amore conventiona attack,
and rely on the imp-ring as a backup. Whether an imp is agood ideain your program depends on the
program; you may lose less, but you may win less. About the only thing you can be sure of istying
more. But testing your warrior always helps.

Killing impsis difficult, but not impossible. Imp gates work well against most imps, but should only
be executed after the rest of your code has done its stuff. Imp gates of the form

SPL 0, <gate
DAT <gat e, <gat e

can sometimes kill even gate-crashing imps. Fast bombing programs can occasionally catch the
launching code before it has completed, especially with fancier imps. Code with along enough
bombing run (e.g. Charon v8.1) can hit and destroy all the imp instructionsiif it is done right. Dropping
asingle MOV 0,<1 bomb on thetail (or vulnerable instruction soon after the tail) of an imp-ring will
kill the entire ring off. Dropping aMOV <2667,<5334 instruction on a 3-point imp ring can kill as
many as 9 imp instructions, and is extremely effective in a stream (which is sequential bombing of
memory). Some programs use an imp trap tailor-made for stunning imp-rings by dropping SPL O
bombs on the imp-ring using a step size of 2667, so that the ring is attacked from the tail forward.

An enhancement to the imp-launching routines is to add decrement statements to all the b-fields of the
SPL and IMP commands. If you have alarge binary launch, for example, you could decrement 63
instructions throughout core for free. Most of the original code | have based this chapter on has such
b-fields.

Hereisalist of imp-style programs worth investigating. Unless otherwise noted, they can be found in

in the 88 directory. Imp-stone combos will be listed in the back of

"The IMPire strikes back™ by Anders Ivner (impire)

"Trident" by Anders Ivner (trident)

"Nimbus 1.2" by Alex MacAulay (nimbusl2)

"Imps! Imps! Imps!” by Steven Morrell (contact morrell @math.utah.edu)

Program 2, Imp, was written by A.K. Dewdney for his Scientific American articles.

Program 3, Imp Gate, was suggested in its current form by B.Thomsen, and is often called awimp in
the literature.

13

ftp://ftp.csua.berkeley.edu/pub/corewar/redcode/warrior10.tar.Z

Program 5, Ring, was stolen ambdified from a _Push Off _ article from P.Kline, but it loaksspt
ciouslylike A.lvner’'s "Trident.”

Program 7, Gat€rasling Spiral, was stolen andodffied from P.Kline's"Cannorade"

Program 8, Nimbus Spiral, was stolen amodified from A.MacAulay’'s "Nimbus 1.2."

[Follow this Tink to Chapte?]

14

MY FIRST COREWAR BOOK

Chapter 2: Stones

If you are fast and small, you can find the enemy before the enemy finds you. Thisis the philosophy of
pattern bombers, a group of warriors much maligned by frustrated corewar enthusiasts trying to make
intelligent warriors. But the fact remains, frenzied maniacs can often kill the slow brooding kind.

Pattern Bombers are also refered to as stones, as part of the stone - scissors - paper analogy. Scissors,
which includes vampires and scanners, are bigger than stones and therefore tend to get beat up by them
more often. Paper, also known as areplicator, is a program that makes copies of itself throughout the
core faster than a pattern bomber can destroy all of them. Stones are thus ineffectual against paper, or
at least they were until W. Mintardjo stuck a two-pass core-clear on one of his stones.

--1--

Nanme: Dwar f

Aut hor : A. K. Dewdney
Speed: 33.33% of ¢
Si ze: 4
Durability: Weak

Ef fecti veness: Average
Scor e:

bonmb DAT #0

dwarf ADD #4, bonb
MOV bonb, @onb
JVP dwar f

end dwar f

Dwarf bombs every fourth instruction with DAT instructions in hopes that enemy processes will
execute this code and die. Since 4 divides coresize, Dwarf will never drop abomb on itself. Because
Dwarf only hits every fourth instruction, it is a mod-4 bomber.

HOW IT WORKS: Before anything executes, core looks like this:

DAT #0, #0 : bonb
ADD #4, -1 (1)

MV -2, @2

JW -2, 0

Then process (1) adds 4 to the B-field of bomb:
DAT #0, #4 ; bonb

ADD #4, -1

MV -2, @2 (2)

JW -2, 0

Process (2) moves bomb 4 instuctions forward, where the B-field of bomb points to:

15

DAT
ADD
MoV
JMWP
DAT

#0,
#4,
-2,
-2,
#0,

#4
-1
@2
0
#4

; bonmb

(3)

Process (3) simply makes the program loop back to the beginning.

DAT
ADD
MoV
JMP
DAT

#0,
#4,
-2,
-2,
#0,

#4
-1
@2
0
#4

; bonb
(4)

Process (4) adds 4 to the B-field of bomb:

DAT
ADD
MoV
JWP
DAT

#0,
#4,
-2,
-2,
#0,

#8
-1
@2
0
#4

; bonb

(5)

Process (5) drops the next bomb where the B-field of bomb is pointing.

DAT
ADD
MoV
JMWP
DAT

#8
-1
@2
0
#4

#0,
#4,
-2,
-2,
#0,

DAT #0, #8

(6)

Process (6) loops back, and bomb after bomb are dropped forward through core.

--2--
Narre: St one
Aut hor : Mat t hew Househol der
Speed: 33.34% of ¢
Si ze: 4
Durability: Weak
Effecti veness: Average
Scor e:
start MOV <2, 3

ADD dl1, start

JMP start

DAT #0
dl DAT #-5084, #5084

end start

Stone is amod-4 bomber like Dwarf, but with two important improvements. First, the step-size has
been increased somewhat for better distribution of bombs against larger opponents. Second, Stone

decrements other adresses while it bombs. Decrementing opponent’ s code may wound it so that DAT
bombs can destroy it later.

16

HOW IT WORKS: Pre-decrement indirect addressing can be tricky, so we shall use the intuitive
approach, even though it yields wrong results for weird instructions like MOV <0,<1. See['tutorial.2']
or the|| CWS’ 94 standard for precise details.

When Stone is loaded, core looks like this below. The DAT #0,#0 instruction is used only as a spacer
between the executable code and the other DAT statement, as we shall shortly see.

MOV <2, 3 (1)
ADD 3, -1

IW -2, 0

DAT #0, #0

DAT #-5084, #5084

The B-field of the IMP instruction (pointed to by the A-field of the MOV instruction) is decremented,
so that it now pointsto the ADD instruction. This ADD instruction is now moved to the DAT #0,#0
instruction (pointed to by the B-field of the MOV instruction). Core now looks like this:

MOV <2, 3

ADD 3, -1 (2)

JW -2, -1 ;this has been decrenented
ADD 3, -1 ;this has been copied

DAT #-5084, #5084

This last sequence may be alittle misleading, because it looks like we are dropping ADD 3,-1 bombs
throughout core. We shall see thisis not usually the case.

We now cometo the ADD 3,-1 instruction. Since this ADD is not immediate, asit was in Dwarf, the
A-operand of the DAT instruction is added to the A-operand of the MOV instruction and the
B-operand of the DAT instruction is added to the B-operand of the MOV instruction:

MOV <-5082, 5087

ADD 3, -1
IWP -2, -1 (3)
ADD 3, -1

DAT #-5084, #5084
The executing process now jumps back (the -1 in the B-field is ignored).

MOV <-5082, 5087 (4)

ADD 3, -1
JWP -2, -1
ADD 3, -1

DAT #-5084, #5084

Process (4) drops another bomb: the location -5082 behind the MOV instruction is decremented and
whatever it points to is moved 5087 in front of the MOV instruction. The pattern continues until
someone is killed or time runs out.

Stone, then, doesn't really drop bombs as such, but rather moves instructions around corein a
pseudo-random fashion. But since coreisinitialized to DAT 0,0, most of the instructions it moves are
deadly DAT statements. This processis called transposition in the literature.

17

ftp://ftp.csua.berkeley.edu/pub/corewar/documents/tutorial.2.Z
http://www.ecst.csuchico.edu/~pizza/koth/icws94.html

--3--

Nanme: Armadi | | o

Aut hor : Stefan Strack
Speed: 32.86% of c
Si ze: 5

Durability: Strong

Ef fecti veness: Average

Scor e:

bonb SPL 0
| oop ADD #3039, ptr

ptr MOV bomb, 81
JMP | oop
MOV 1, <-1
end bonb

Armadillo drops SPL 0 bomtbrouglout core to stun the enemy, and then lays down a DAT carpet
(also called a core-clear) to kill the enemy. This is one oé#nkestbombers that used a core-clear to
erase all of memory. It scores 100% wins against Wait (program 1, chapter 1) where Dwarf and Stone
only score 25% wins and 75% ties. In egpeience SPL bombs are the maaffedive single-instrue

tion bomb a warrior can drop. However, SPL bombs don’t kill many programs cleanly, don't allow

you tosimultaneously bomb the rest of the core witlecrenents and don’tpardyze theoppmentas

well as thanulti-instrudion bombs thascamersdrop.

Anotherinnovation in Armadillo is the use of a SPLifstrudion inside the warrior. If any of the other
instudionsare hit with DAT bombs, the program may not operate correctly, but the bomb doesn't kill
all of the processe#dditionally, thisself-spliting codegeneatesenough processes that imps cannot
kill Armadillo by thenselves

HOW IT WORKS: When Armadillo is loaded into core, it looks like this:

SPL 0, O (1)
ADD #3039, 1

MOV -2, 81

JW -2, 0

MOV 1, <-1

Process (1) splits into processes (2) and (3).

SPL 0, O (3)
ADD #3039, 1 (2)
MOV -2, 81

JW -2, 0

MOV 1, <-1

Process (2) executes and process (3) splits.

SPL 0, 0 (6)
ADD #3039, 1 (5)
MOV -2, 3120 (4)
JW -2, 0
MOV 1, <-1

Process (4) drops a split bomb, process (5) changes the bdouaign, and process (6) splits.

18

SPL 0, 0 (10)
ADD #3039, 1 (9)
MOV -2, -1841 (8)
JW -2, 0 (7)
MOV 1, <-1

Process (7) jumps back in order to conserve processes, (8) bombs, (9) changes the bombing location,
and (10) splits.

SPL 0, O (15)

ADD #3039, 1 (14) (11)
MOV -2, 1198 (13)

JW -2, 0 (12)

MOV 1, <-1

And so the process continues. The ever-lengthening string of processes executes the code (backwards!)
that drops the SPL bombs. Eventually, a SPL 0,0 gets dropped on the IMP statement:

SPL 0, 0
ADD #3039, 1

MOV -2, 1

SPL 0, 0 (1)
MOV 1, <-1

The loop is broken, and all of the processes fall through to this second SPL instruction eventually. We
examinethislast bit of code asif there were only one process running at the SPL instruction, since the
program doesn’t depend on process order from this point on. Process (1) splits:

SPL 0, O
ADD #3039, 1

MOV -2, 1

SPL 0, 0 (3)
MV 1, <1 (2

Process (2) decrements the B-field of the SPL instruction (which the SPL instruction doesn’t need) and
moves the blank (DAT 0,0) instruction to where the SPL instruction points:

SPL 0, O
ADD #3039, 1

SPL 0, -1 (3)
MOV 1, <-1

(4)
Process (3) splits:

SPL 0, O
ADD #3039, 1

SPL O, -1 (6)
MV 1, <-1 (5)
(4)

Now process (4) executes an illegal instruction and dies, (5) decrements the SPL instruction again and
bombs the next instruction backwards, and (6) splits:

19

SPL 0, O

SPL O, -2 (9)
MV 1, <1 (8)
(7)

This pattern repeats until eventually the core clear wraps around and erases itself. Just before this
erasure occurs, core looks like this:

SPL 0, 2 (23997)
MV 1, <1 (23996)
(23995)

Process (23995) dies as usual, but this time, when process (23996) bombs, it erases the bombing
instruction:

SPL 0, 2 (23997)
(23998)

Now, if weignore al of the dying processes, we see that this SPL command keeps splitting processes
toitself, keeping the warrior aive.

—-4--

Nane: Cannonade Stone
Speed: 24.51% of c

Si ze: 5

Durability: Aver age

Ef fecti veness: Good

Scor e:

MOV < 6, 1
start SPL -1, <5144

ADD 3, -2

DIN -2, <5142

DAT #0, #0

MOV 190, <-190
end start

Cannonade Stone takes the idea of self-splitting code to another level. Altough it bombs somewhat
slower than other bombers, it splits off processes so quickly that a stun attack on other components of
the warrior will not halt the execution of the stone. The bombing run hits every fifth instruction, with a
transposition at every tenth position and a decrement between each transposition. Additionaly, a
DJN-stream is laid through memory, giving another form of attack without increasing the size or speed
of the program. At the end of the bombing run, Cannonade Stone converts into a core-clear and partial
imp-gate.

HOW IT WORKS: When Cannonade Stone isfirst loaded into memory, it looks like this:

MOV <6, 1
SPL -1, <5144 (1)
ADD 3, -2

DIN -2, <5142

DAT #0, #0

MOV 190, <-190

20

Process (1) splits:

MOV <6, 1 (3)
SPL -1, <5144

ADD 3, -2 (2)
DIN -2, <5142

DAT #0, #0

MOV 190, <- 190
Now processes (2) and (3) execute, adding and then bombing like every other stone.

MOV <196, -189
SPL -1, <5144 (5)
ADD 3, -2

DIN -2, <5142 (4)
DAT #0, #0

MOV 190, <-190

Process (4) usually jumps back to the $ftrudion (more on this in a moment), and the pattern
repeats: each process at the SPL command splits into two processes, which add and bomb in rapid
succesion

At the end of the bomb run, the bomber mutates itself into a core-clear. The SPL -insiildion
is ovemwrittenwith the MOV 190,<-19@nstrudion. The executng portion of code then looks like this:

MOV 190, <-190
ADD 3, -2
DIN -2, <5142

The firstinstrudion performs the core-clear, the secamstrudion does nothing ostrateyic worth,

and the thirdnstrudion loops processes back to the firsttrudion. Additionally, thedecrenentin

the MOV command sets up a partial (33%) imp-gateid®®udions before it, and thdecranentin

the DJNinstrudion sets up a second partial (33%) imp gate 2688udions before the first one.
Since 2667 is the magic number for 3-point imps, thesteudions defend the bomber against 3-point
imps at roughly 67%fficiency.

Let us examine in more detail how the DJN -2,<5ibé&rudion works. When it is executed, the
predecrenentin the B-fielddecrenentstheinstrudion 5142 after the DJMtstrudion, which isprobe-
bly a DAT 0,0 command:

DIN -2, <5142

DAT 0, -1

The DJNinstrudion now decrenentstheinstrudion before that, whiclprobebly doesn’t have a
B-value of 1, so thexecuing process jumps back to thegiming of the loop:

DIN -2, <5142

DAT 0, -1 ;this was decrenented by the DIN
DAT 0, -1 ;this was decrenented by the <

The next time the DJMstrudion is executed, the B-field 5142 after fhstrudion is decranented
and so is thenstrudion pointed by that B-field (2 before it):

21

DIN -2, <5142

DAT 0, -1 ;this was decrenented by the DIN
DAT 0, -1
DAT 0, -2 ;this was decrenented by the <

As the DJNinstrudion is repeag¢dly executed, a carpet décranentsis laid downbackvardsthrough
core.

This is not exactly the pattern that is laid down in core, because the SPL -1,<5144 cataorand
mentsthe same B-field as the DJhstrudion does. This adds gaps in the DIN-stream, making it more
spread out and liable to hit the enemy progradditionally, it turns the B-field into a better partial
imp-gate.

We have made twassumgions First, that thenstrudion 5142 after the DJMstrudion is DAT 0,0;
second, that thimstrudion pointed to by thainstrudion does not have a B-field of 1. If the first
assumgon fails, the worst that can happen is a non-zero B-field, in which case the DJN stream is laid
someavhereelse. If the secongssumpon fails, then theexecuing process does not jump back and
proceeds instead to an illegastrudion. Fortunately, this is just one of many processes, so the

bombing loop is noserously affected. This result may be compunded, however, if the enemy has lots
of B-fields with value 1.

--5--

Nane: Ni ght Crawl er Stone
Aut hor : Wayne Sheppard
Speed: 32.86% of c

Si ze: 4

Durability: Strong

Ef fecti veness: Good

Scor e:

start SPL 0, <-1001
MOV <21, 1+2234

SuB 1, -1
DIN -2, <-2234
end start

Night Crawler Stone is self-spliting mod-2 bomber with a DIN-stream. When it finishes its bombing
run, it turns into code that performs aaidiion core-clear.

HOW IT WORKS: Night Crawler Stone bombs mememilarly to Stone, with the obviousprove
mentsthat Night Crawler Stone bombs in a tighter mod-2 pattesglisspliting, uses a DJN-stream,
and embeds the bombing step size inetkecuing code, making it onstrudion smaller.

After the SPL 0,<-100inhstrudion has split off about 144 processes into the main loop, it is bombed,
making theeffedive size of Night Crawler Stone onlyistrudionslong. Just before the bomber hits
the bombing loop, the SUB 1,iistrudion is decrenented staring anaddtion core-clear.

Unlike traditional core-clears, thaddtion core-clear doesntvemrite core with DATstatenents

Instead, itmodifies the A- and B-fields of thaastrudionsto mess up the enemy’s contstiudures

For example, a SPL 0 that survived the bombing run becomes a SPL 2 which will not hold processes
by itself. Anaddtion core-clear is only slightly lesffedive than araditional core-clear, and requires

no addiional instrudionsto run.

22

Just before the addition core-clear takes effect, Night Crawler Stone looks like this:

DAT 0, -1
MOV <1, 3895 (12938) (12941)
SUB 1, -1 (12940) (12943)

DIN -2, <-2234 (12939) (12942)

Process (* 38) executes, decrementing the SUB instruction and doing a copy:

DAT 0, -1
MOV <1, 3895 (12941)
SUB 1, -2 (12940) (12943)

DIN -2, <-2234 (12939) (12942)

Process (* 39) executes, laying down another decrement in the DJIN stream. Process (*40) then
executes, changing the A- and B-operands of the DAT statement:

DAT 2, 2233
MOV <1, 3895 (12941)
SUB 1, -2 (12943)

DIN -2, <-2234 (12942)

Process (*41) executes, decrementing the SUB instruction again, and then (*43) modifies the operands
of the next instruction back:

DAT 2, 2234
DAT 2, 2233
MOV <1, 3895
SUB 1, -3

DIN -2, <-2234

So goes the core-clear, until at the end the DJIN instruction is hit and turnsinto DJN 0,<0, where all of
the processes go and execute repeatedly, laying down a DJIN stream until time expires.

-6--

Nanme: Keyst one Stone
Speed: 32.86% of c

Si ze: 5

Durability: Strong

Ef fecti veness: Good

Scor e:

step equ 2517

enerald SPL 0, <-25
MOV <-step+l, 92
SUB 2, -1
DIN -2, <2002
JMP step, <-step

wai t DIN 0, <-12
paper DIN 0, <-12
boot MOV ener al d+4, paper-step

MOV ener al d+3, <boot
MOV ener al d+2, <boot
MOV ener al d+1, <boot
MOV eneral d, <boot
MV wai t, paper+3053
JMP @oot

end boot

23

After initialization, Keystone Stone bombs with a mod-1 pattern which approximates mod-4. If paper
is detected, processes are split to the label "paper,” where some code can be inserted to withstand
paper attacks. When the bombimg run is over, Keystone Stone turnsitself into an imp gate. (P.Kline's
Keystone uses this gate as a backup strategy. Under normal operation, an external core-clear erases
this stone.)

HOW IT WORKS: To set things up, the imp-gate (labelled "wait") needs to be copied away from the
main block of code. Rather than adding an instruction to the main block to do this, the boot-strapping
code (imaginatively labelled "boot") copies the stone and the imp-gate away from itself.

This has two advantages when fighting warriors that search through memory for the enemy. First, the
copied code containing the executing stone is kept small, making it more difficult to locate. Second,
the original code acts as a decoy for the enemy. In fact, many programs pad the block of original code
with nonsense instructions to make a larger decoy for the enemy to grapple with. Almost all modern
stones use boot-strapping and decoys to slow down the enemy.

When theinitialization is finished, the stone starts a typical bombing run. If a process executing the
DJN instruction finds a B-operand of 1, it falls out of the loop, executes the IMP instruction, and ends
up at the label "paper,”" where some paper-stomping code should be inserted. The rationale behind this
isthat typically only paper has a B-operand of 1.

The bombing run ends with the DJIN -2,<2002 instruction being hit, but not with atypical DAT bomb.
Because of clever planning, the imp-gate instruction overwrites the DJIN -2 instruction. The bomber
now looks like this:

SPL 0, <-25

MOV <-step+l, 2
SUB 2, -1

DIN 0, <-12

JMP 2517, <-2517

Nearly al of the processesin the stone end up executing the DJN 0 instruction, forming an imp-gate.
Along with killing imps, thisimp-gate lays down a DIN-stream for extra program mangling. And
processes falling through the DJIN instruction don’t matter much, because the SPL 0 instruction slowly
generates New processes.

--7--
Nane: W nter Werewol f
Aut hor : W Mntardjo
Speed: 25% of c

Si ze: 7

Durability: Weak

Ef fecti veness: Excell ent

Scor e:

step equ 153
init equ 152
n equ ((12*8)-2)
dat a DAT <-4-n, #0
split SPL 0, <-3-step-n
mai n MOV junp, @
MOV split, <2
ADD #step, 1
JVMP main, init

24

MOV @4, <n

jump Jw -1, 1

boot MOV mai n+5, -500+5
MOV mai n+4, <boot
MOV mai n+3, <boot
MOV mai n+2, <boot
MOV mai n+1, <boot
MOV nai n, <boot
MOV mai n-1, <boot
MOV dat a, boot-500-3-n
JMP boot - 500

end boot

Winter Werewolf isamod-8 bomber more in the spirit of Armadillo than Stone -- it drops specialized
bombs througout core to stun the enemy, and then kills the enemy with a core-clear. It outscores
Armadillo in three major aspects: It drops a more effective SPL/IMP bomb, it uses a two-pass
core-clear, and it degradesinto a perfect imp-gate to mop up any stray imps. Thefirst pass of the
core-clear lays down a SPL 0 stream to make sure the enemy is Really Stunned, and the second pass of
the core-clear lays down DAT statements that kill the enemy. Winter Werewolf was one of the first
modern programs that could compete against imp-rings.

HOW IT WORKS: After the boot-strapping routine, Winter Werewolf looks like this:
DAT <-98, #0

SPL 0, <-250

MV 5, @ (1)
MOV -2, <2

ADD #153, 1

JW -3, 152

MOV @4, <94

JW -1, 1

The next two instructions drop a SPL/IMP bomb. Fist the IMP -1,1 instruction is copied:

DAT <-98, #0

SPL 0, <-250

MV 5, @

MV -2, <2 (2)
ADD #153, 1

IJWP -3, 152

MV @4, <94

IW -1, 1

IW -1, 1

The next instruction decrements the bomb pointer and copies the SPL 0,<-250 instruction to the new
location:

25

DAT <-98, #0

SPL 0, <-250

MV 5, @

MOV -2, <2

ADD #153, 1 (3)
JW -3, 151

MV @4, <94
IW -1, 1

SPL 0, <-250
JW -1, 1

The nextinstrudion changes the bomb pointerprepaation for dropping the next bomb.
DAT <-98, #0

SPL 0, <-250

MOV 5, @

MOV -2, <2

ADD #153, 1

JwP -3, 302 (4)
MOV @4, <94

JWP -1, 1

SPL 0, <-250
Jw -1, 1

Finally, the JMHnstraion loops to bomb the nekicaion. The B-operand of the JMRBstrudion is
ignored,allowing it to be used as the bomb pointer. The bombing run hits every &gb#tion with

one of these bombs. The big trick at this point is to have the program bomb itself without getting
trapped in a SPL/JMP loop itselfEthe bombing run is over, the program looks like this (if we reset the
process counter):

DAT <-98, #0

SPL 0, <-250

MV 5, @ (1)
MOV -2, <2

ADD #153, 1

JWP -3, 0

MV @4, <94

JW -1, 1

When this firsinstrudion is executed, the bomb pointer is bombed with the IMP iristiudion.
DAT <-98, #0

SPL 0, <-250

MV 5, @

MV -2, <2 (2)
ADD #153, 1

IWP -1,1

MV @4, <94
IW -1, 1

But, since the B-field of the bomb pointer just got changed to 1, the next bomb hits the bomb pointer,
too. Remenber, first the pointer islecreanented..

26

DAT <-98, #0

SPL 0, <-250
MV 5, @
MV -2, <2
ADD #153, 1
JW -1,0

MV @4, <94
JW -1, 1

...and then the SPL bomb is dropped.
DAT <-98, #0

SPL 0, <-250

MOV 5, @

MOV -2, <2

ADD #153, 1 (3)
SPL 0, <-250

MOV @4, <94

JWP -1, 1

Now the most subtle command of the whole program executes: The B-field of the new SPL 0,<-250
command is altered. We shall see later why thisportant

DAT <-98, #0

SPL 0, <-250

MV 5, @

MOV -2, <2

ADD #153, 1

SPL 0, <-97 (4)
MV @4, <94

JwP -1, 1

Now the core-clear begins. The SPL 0,<u®trudion splits off processes and the JMP -hgtruc
tion speeds up the core-clear, but it is the MOV @-4,<94 command that does the actual core-clear, and
this deserves further comment.

The A-field of the MOV @-4,<94hstrudion points to the MOV 5,@3 command that points to the

SPL 0,<-97instrudion. Since the A-field usesdirectaddresig, we arecarpteng the core with SPL
0,<97instrudionsfor now. If the B-field of the MOV @-4,<9#hstrudion pointed to annstrudion

with zero B-field, this would yeild a very short (B&trudion) core-clear before the MOV command
erased itself. But because of the bombing run, the B-field points to a SPL 0,<-250 command. So the
pointerslook like this:

DAT <-98, #0

I

I

|
SPL 0, <-250 |
MOV 5, @ Sem <e--- |
MOV -2, <2 | | |
ADD #153, 1 | | |
SPL 0, <-97 <---- | |
MV @4, <94 A-field--- B-field--- |
JW -1, 1 |
I

SPL 0, <250 <--e--mmmmmmmmaeaaan -

27

After the first process executes the MOV @-4,<94 instruction, the pointers look like this:
SPL 0, <-97 S-mmmmmmmmimm e
DAT <- 98, #0

I

I

|
SPL 0, <-250 |
MOV 5, @ Ses <e--- |
MOV -2, <2 | | |
ADD #153, 1 | | |
SPL 0, <-97 <---- | |
MV @4, <94 A-field--- B-field--- |
JW -1, 1 |
I

SPL 0, <251 <eememmmmnnaeaaaoot o
And after the second process executes this instruction, the pointers ook like this:

SPL 0, <-97 See-mmmmmmmm e
SPL 0, <-97

DAT <-98, #0

I

I

I

|
SPL 0, <-250 |
MV 5 @ ---- <---- |
MOV -2, <2 | | |
ADD #153, 1 | | |
SPL 0, <-97 <---- | |
MV @4, <94 A-field--- B-field--- |
IW -1, 1 |
I

SPL 0, <-251 S---m-mmmmmmmm e o

And so the core-clear goes, filling the entire core with SPL 0,<-97 commands, until the B-field pointer
gets overwritten:

DAT <-98, #0

SPL 0, <-250
MV 5, @ B
MV -2, <2 | | <
ADD #153, 1 | | |
SPL 0, <-97 <---- | |
MV @4, <94 A-field--- B-field--- |
Jw -1, 1 | |
I

SPL 0, <-Q7 <ecvoocooconciacanoiaas aun

Thisiswhere the ADD instruction mentioned above becomes so vital. If this pointer were overwritten
by a SPL 0,<-250 command, the SPL core-clear would repeat, and the program would never get
around to killing off the opponent.

Note that the new pointer value skips over most of the core-clearing code, allowing the program to
start a second core-clear. And the next iteration of MOV @-4,<94 does even more pointer magic,
overwriting the A-field pointer with the SPL 0,<-97 instruction:

28

DAT <-98, #0 <---
|
SPL 0, <-250 |
SPL 0, <-97 ---- <--ss Semeoommeaoo--
MOV -2, <2 | |
ADD #153, 1 | |
SPL 0, <-97 | |
MV @4, <94 A-field--- B-field--- |
IW -1, 1 |

I

S L
Because the A-field pointer now points to the DAT <-98,#0 command, this bomb is dropped next:

DAT <-98, #0 <---
|
DAT <-98, #0 | <c-ec-mecmmmcmmaooaa-
SPL 0, <-97 ---- <---- |
MOV -2, <2 | |
ADD #153, 1 | |
SPL 0, <-97 | |
MV @4, <94 A-field--- B-field--- |
IW -1, 1 I

I

SPL 0, <-98 <---ce-mccmicnananoeaae oe-

This starts the second core-clear, using DAT statementsto finally kill the enemy processes. Like the
first core-clear, this one continues until it wraps around and overwrites the B-field pointer again:

DAT <-98, #0 <---

|

SPL 0, <-97 ---- <----

MOV -2, <2 |

ADD #153, 1 |

SPL 0, <-97 |

MV @4, <94 A-field--- B-field---
JW -1, 1 |

DAT <-98, #0 <---se-memmmmmcamma-

But this time, the new pointer does not cause the coreclear to skip the code. The core-clear continues
until the MOV @-4,<94 instruction overwrites itself with the DAT <-98,#0 instruction:

SPL 0, <-97
MOV -2, <2

ADD #153, 1
SPL 0, <-97
DAT <-98, #0
DAT <-98, #0

The SPL 0,<-97 instruction keeps splitting processes to itself, keeping the program alive. The only
other instruction that executesis the next one, which kills off all of the processes that execute it. Both
of these instructions decrement the same instruction before the executing code, forming an imp-gate to
kill off any remaining imp-spiras the enemy might have.

29

--Conclusion--

One factor that could mean tt#ferencebetween a top-rate stone anduamsucess$ul stone is the
choice of step size. The program that manages to bomb the enemy first has aatbeidade and
some bombing step sizes are melffecientatscaming for the enemy than others. So what makes a
good step size?

Ideally, it ought to hit everiocaion in 8000 bombs, every othlercation in 8000/2=4000 bombs,
every thirdlocation in 8000/3=2667 bombs, etdnfortunately, this isimpossible, espeially with a
single step size, but it suggests a bas@egy-- go for the biggest programs first and then fill in the

gaps.

One way of rating thefficiencyof a step size is to find the length of the largest unbombed section of
code after each bomb is dropped. By adding up all of these lengths, we get a number that tells us how
big an average gap is. (Indeed,dwyiding this number by the number of bombs dropped, we get the
average gap size.) If wainimizethis number over all step sizes, we get the "Optima Numbers." For a
coresizeof 8000, these optima numbers are:

nmod-1 3359/3039 under-100 -> 73
nmod-2 3094/ 2234 under-100 -> 98
nmod-4 3364/ 3044 under-100 -> 76
nmod-5 3315/2365 under-100 -> 95
nod-8 2936/ 2376

1

nmod- 10 2930/ 2430

The constant for Night Crawler Stone, for instance, is taken from this table.

Another common rating is how closely to in half the new beotilvidesthe old gap when it is
dropped. By taking thdifferencesbetween where the bombs fall and the middle of each gap and
adding these distances up, we geal@matemethod for testingfficiency.

Both of these methods are useful for finding general-purpose step sizes. But suppose you wanted to
find a step sizeptimizedfor killing other stones. Since stones usually have four oiirfisteudions

you would want a step size that would bomb every 4th anoh&titudion quickly, regardessof how it

does in general.

Fortunately, there is a program in the public domain tteitUatesall of these things quick{Corestep
by Jay Han can be found as misc/corestep.ccaludtatesoptima numbers and optimal step sizes.
You will need a C compiler to use it, but itathemise self-contained. For moiafromaion, FTP a
copy and read through it. The classic fornzdécuatesoptima numbers, th@temateformulacalcu
latesthe sum of the distances between bombs and midpoints, and Galtdatesoptimal step sizes
against a specific program length.

If you don’t have access to a C compiler or want this for some other reason, P. Kline has compiled a
list of all 8000 step-sizes with their mod, find-4, find-5, find-10, and find-13 numbers, along with
imp-killing constants and imp-numbers. This table is designed for g@aagdheetwr databases. It

is availablein the miscihirecory under the nanjeum8000.t{twith documertation in[num8000.ddc

He used this on Keystone Stone to come up with a mod-1 constant with a low find-4 score, so that it
would act like a mod-4 bomber binterfere with enemy scans (more about this in the next chapter).

30

ftp://ftp.csua.berkeley.edu/pub/corewar/misc/corestep.c
ftp://ftp.csua.berkeley.edu/pub/corewar/misc/num8000.txt
ftp://ftp.csua.berkeley.edu/pub/corewar/misc/num8000.doc

Here is a list obucceshul stones. All of these can be foundwarrior10.tafin the 88diredtory, except
for SJ-4A and Keystone t21, which are buried deep within thieehi@4.txt.Z(in thenewsgyroupdirec
tory last time | checkedBvenything here by P.Kline has an anti-varopmpaent which will be
talked about in a later chapter.

"Leprechaun 1b" by Anders lvnéleprechaun)
"Emerald 2" by P.Klindemerald2)
"ExtraExtra 2" by P.Kline(extra2)

"Keystone t21" byP.Kline

"SJ-4A" byJ.Layland

"Moonstonel" by DanNabuovsky (moorstong

Self-spliting stones with imp-rings can be verffedive. Here is a list of imp-stone combos that are
worthinvegigaing. All of them excepCannomdecan be found in warriorl0.tar, a@dnnomdecan
be found in the feb94.txt.Z file.

"Cannorade' by P.Kline

"Imprimis 6" by P.Kline(imprimis6)

"Night Crawler 1" by WayneShegard(nightcrawl)
"Sphinx 2.8" by W. Mintardjgsphinx)

Program 1, Dwarf, was written by A.K. Dewdney for 8idertific Americanarticles

Program 2, Stone, was taken from the ICWS 1990 cormwarament It bears aemarlableresem
blanceto Rock by Scott Nelson, which was posted to the net a couple of months betorarthe
ment Strange, eh?

Program 4CannomadeStone was extracted from P.Klin€sannomde

Program 5, Night Crawler Stone without the SPL 0 stasmitedas "No Ties Allowed," and
confused the experts as to heamehing so deadly could fit into 3 lines.

Program 6, Keystone Stone, was stolen from P.Kline’s "Keystone t213ddsraping code in the
example differsomeavhatfrom theboostragping code used in Keystone.

Program 7, WinteWerewolf, originally did not copy the stone away from a decoy. | am lexpéami-
latethat the code as it exists here with a bigger deesgnblesWinter Werewolf 3, a program that
was verysuccesfl on the hill.

31

ftp://ftp.csua.berkeley.edu/pub/corewar/redcode/warrior10.tar.Z
ftp://ftp.csua.berkeley.edu/pub/corewar/newsgroup/feb94.txt.Z

	MY FIRST COREWAR BOOK by Steven Morrell
	PREFACE
	Chapter 1: Imp-Rings
	--1--
	--2--
	--3--
	--4--
	--5--
	--6--
	--7--
	--8--

	--Conclusion--

	MY FIRST COREWAR BOOK
	
	Chapter 2: Stones
	--1--
	--2--
	--3--
	--4--
	--5--
	--6--
	--7--

	--Conclusion--

