
MY FIRST COREWAR BOOK
by Steven Morrell

PREFACE

This book is an introductory collection of corewar warriors with commentary. It assumes an acquain-
tance with the ICWS ’88 redcode language (See M.Durham’s tutorial.1 and tutorial.2 for details).
Unless otherwise noted, all redcode is written in ICWS ’88 and is designed for a coresize of 8000,
process limit 8000. All documents referred to in this text are available by anonymous FTP at
ftp.csua.berkeley.edu in one of the subdirectories of pub/corewar/.

After a brief introduction, each chapter presents warriors by subject. I then pontificate on the merits of
these various warriors and give some hints for successful implementation. I mention credits and give
references to other warriors worth further investigation. Unless otherwise indicated, these warriors are
archived in warrior10.tar in the redcode/ directory.

The presentation of each warrior follows roughly the same format. First, the parameters of the warrior
are given. These include the name, author, attack speed, effective size, durability, and effectiveness,
and score against the Pizza Hill . The effective size is the size of the executing code during the attack
phase, taking into account regenerative code. Next, self-contained source code is given, followed by a
brief description of the warrior. Finally, a detailed technical description of how the warrior runs is
given.

I hope that this helps. If you have questions or comments, send them to morrell@math.utah.edu, where
you can reach me until June,1994.

Steven Morrell

Chapter 1: Imp-Rings

On October 14, 1992, A.Ivner posted a warrior that revolutionized the game of corewar. "The IMPire
strikes back" scored about 170 on the Intel hill and only suffered 10% losses, putting it firmly in first
place. A.Ivner had invented a way to kill other programs with imps -- the world’s first imp-ring.
D.Nabutovsky improved the launch code a bit by making an imp-spiral and adding a stone in his
"Impressive", which lost only 2% and scored 195 when it started on the hill (for more information on
stones, see chapter 2). Since that time, most warriors on the hill have either been imps or something
hostile to imps.

This chapter deals with imps, from the basic imp proposed by A.K.Dewdney in the original Scientific
American articles to the modern-day imp-spiral we see as a component of many successful warriors.

1

ftp://ftp.csua.berkeley.edu/pub/corewar/documents/tutorial.1.Z
ftp://ftp.csua.berkeley.edu/pub/corewar/documents/tutorial.2.Z
ftp://ftp.csua.berkeley.edu/pub/corewar/redcode/warrior10.tar.Z
http://www.ecst.csuchico.edu:80/~pizza/koth/

--1--

Name: Wait
Speed: None
Size: 1
Durability: Strong
Effectiveness: None
Score:

wait JMP wait
end wait

Wait is the simplest warrior. Its small size makes it difficult to locate. However, it has no attack, so it
only wins if the enemy program self-destructs. We shall be using this program for fodder.

--2--

Name: Imp
Author: A.K.Dewdney
Speed: 100% of c (sequential)
Size: 1
Durability: Strong
Effectiveness: Poor
Score:

imp MOV imp, imp+1
end imp

Imp presents the enemy with a small, moving target that will not die without a direct hit. It ties a lot,
and is vulnerable to the imp-gate. (See program 3)

HOW IT WORKS: When Imp is loaded and before it executes, it looks like this:

MOV 0,1 (1)

(The (1) shows which instruction will execute on the first cycle.) When process (1) executes, it first
copies its instruction to the next address and then moves to the next instruction:

MOV 0,1 ;This is the original.
MOV 0,1 (2) ;This is the copy.

Process (2) now executes. Since all addressing is relative, the process copies its instruction to the next
address and advances.

MOV 0,1
MOV 0,1
MOV 0,1 (3) ;This is the second copy.

And so it goes, overwriting anything in its path with MOV 0,1 instructions. So when it encounters
enemy code, it replaces the enemy code with MOV 0,1 instructions, turning the enemy processes into
imps. Note that although the enemy code is gone, the enemy processes live on, so imps do not win
unless the enemy code self-destructs.

2

--3--

Name: Imp Gate
Speed: None
Size: 1
Durability: Strong
Effectiveness: Excellent against imps, Extremely Poor against others
Score:

gate equ wait-10
wait JMP wait,<gate
end wait

Imp Gate waits and destroys imps that happen to pass 10 instructions before it. It is seldom overrun by
imps and its small size makes it difficult to locate. The imp gate is defensive by nature, and will not
win against a stationary enemy unless this enemy self-destructs.

HOW IT WORKS: The process running at _wait_ jumps to the A-value of this command, i.e. back to
wait. However, it also decrements the B-field of _gate_. Thus, the B-field of _gate_ is decremented
every turn. When an enemy imp comes by this is what happens:

MOV 0,1 (x) ;here comes the imp
DAT 0,-5 ;here is the gate

The imp copies itself and advances onto the gate:

MOV 0,1
MOV 0,1 (x+1) ;here is the gate

The gate decrements:

MOV 0,1
MOV 0,0 (x+1) ;here is the gate

The imp copies this instruction to itself (effectively doing nothing) and advances, falling off the end:

MOV 0,1
MOV 0,0 ;here is the gate
 (x+2)

The gate decrements again (but the damage has already been done.)

MOV 0,1
MOV 0,-1 ;here is the gate
 (x+2)

The enemy process executes an illegal instruction and dies.

--4--

Name: Worm
Speed: 25% of c (linear)
Size: 1.75
Durability: Very Strong
Effectiveness: Poor
Score:

launch SPL b
 SPL ab

3

aa JMP imp
ab JMP imp+1
b SPL bb
ba JMP imp+2
bb JMP imp+3
imp MOV imp,imp+1
end launch

Worm is a symbiotic collection of imps. The only vulnerable parts of the worm is the tail instruction
and the instruction about to execute, hence the effective size of 1.75 (25% of the time, the tail instruc-
tion is the instruction about to execute.) It is very diffi cult to kill, because each imp must be disposed
of individually. However, it is still vulnerable to imp gates. As with Imp, Worm overwrites enemy
code but preserves enemy processes.

HOW IT WORKS: First, we launch the worm using a binary launch:

SPL 4,0 (1)
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1

The first process splits into processes (2) and (3):

SPL 4,0
SPL 2,0 (2)
JMP 5,0
JMP 5,0
SPL 2,0 (3)
JMP 4,0
JMP 4,0
MOV 0,1

Process (2) splits into processes (4) and (5):

SPL 4,0
SPL 2,0
JMP 5,0 (4)
JMP 5,0 (5)
SPL 2,0 (3)
JMP 4,0
JMP 4,0
MOV 0,1

Process (3) splits:

SPL 4,0
SPL 2,0
JMP 5,0 (4)
JMP 5,0 (5)
SPL 2,0
JMP 4,0 (6)
JMP 4,0 (7)
MOV 0,1

Process (4) jumps:

4

SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0 (5)
SPL 2,0
JMP 4,0 (6)
JMP 4,0 (7)
MOV 0,1 (8)

Processes (5), (6) and (7) jump:

SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1 (8)
 (9)
 (10)
 (11)

The worm will now start crawling though memory. Note that if processes (9), (10) or (11) executed
right now, they would execute an illegal instruction and die. But process (8) executes, copying the
MOV instruction to where process (9) is going to execute:

SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (9) (12)
 (10)
 (11)

Now process (9) executes, copying the MOV instruction to process (10).

SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (12)
MOV 0,1 (10) (13)
 (11)

And after (10) and (11) have executed, the worm has crawled forward an instruction, leaving a slimy
MOV 0,1 trail behind.

5

SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (12)
MOV 0,1 (13)
MOV 0,1 (14)
MOV 0,1 (15)

--5--

Name: Ring
Speed: 100% of c (mostly linear)
Size: 1
Durability: Average
Effectiveness: Fair
Score:

c JMP imp-2666
launch SPL c
 SPL imp+2667
imp MOV 0,2667
end launch

Ring is a symbiotic collection of three imps distributed through core. It has the capability to destroy
enemy processes it overruns, if the enemy is running only one or two processes. This code will run
correctly only in a coresize of 8000, although the constants may be tweaked to run in any coresize not
divisible by 3. Ring is an example of a 3-pt imp.

HOW IT WORKS: The launching code is a very small binary startup:

JMP -2663, 0
SPL 0, 0 (1)
SPL 2668, 0
MOV 0,2667

The first process splits:

JMP -2663, 0 (3)
SPL 0, 0
SPL 2668, 0 (2)
MOV 0,2667

The second process splits:

JMP -2663, 0 (3)
SPL 0, 0
SPL 2668, 0
MOV 0,2667 (4)
...
 (5) ;this location is 2667 instructions after the imp

The third process jumps:

6

MOV 0,2667 (4)
...
 (5) ;this location is 2667 instructions after the imp
...
 (6) ;this location is 2667 instructions after process (2)

Now the fun begins. Process (4) executes, copying the imp instruction to process (5) and becoming
process (7):

MOV 0,2667
 (7)
...
MOV 0,2667 (5)
...
 (6)

(5) executes, copying the imp instruction to process (6):

MOV 0,2667
 (7)
...
MOV 0,2667
 (8)
...
MOV 0,2667 (6)

And now (6) executes, copying the imp instruction back to process (7):

MOV 0,2667
MOV 0,2667 (7)
...
MOV 0,2667
 (8)
...
MOV 0,2667
 (9)

The cycle starts all over again, and the ring creeps forward.

Let’s see what happens when Ring fights Wait (Program 1). Wait executes JMP 0,0 until eventually
Ring overwrites this instruction with MOV 0,2667.

MOV 0,2667 (1)

Wait executes this instruction and advances:

MOV 0,2667
 (2)

Since Ring takes 3 cycles to move the next command into place, Wait’s process now executes an
illegal instruction and dies.

So Ring slowly advances through core, and if the enemy is running a single process, it falls off the end
of the imp ring.

7

--6--

Name: Spiral
Speed: 37.5% of c (mostly linear)
Size: 1.875
Durability: Very Strong
Effectiveness: Fair
Score:

step equ 2667
launch SPL 8
 SPL 4
 SPL 2
 JMP imp
 JMP imp+step
 SPL 2
 JMP imp+(step*2)
 JMP imp+(step*3)
 SPL 4
 SPL 2
 JMP imp+(step*4)
 JMP imp+(step*5)
 SPL 2
 JMP imp+(step*6)
 JMP imp+(step*7)
imp MOV 0,step
end launch

Spiral crosses the durability of a worm with the effectiveness of a ring. Spiral is resistant to most
conventional attacks, and since it is an 8-process imp-ring, it kills any enemy it overwrites if the
enemy has less than 8 processes running. The only vulnerable parts of the spiral are the tail and the
process that is currently running. Spiral is vulnerable to imp gates, however.

HOW IT WORKS: After a binary launch, the processes are arranged as follows:

MOV 0,2667 (16)
 (19) ;this process is 2667 instructions after process (18)
 (22)
...
 (17) ;this process is 2667 instructions after process (16)
 (20)
 (23)
...
 (18) ;this process is 2667 instructions after process (17)
 (21)

Now the spiral worms along: (16) copies the imp to (17), which copies it to (18), and so on. All the
processes advance 1 instruction as this happens, and then the imp-passing instructions begin again.

A step-by step analysis of how imp gates destroy spirals would be lengthy and unnecessarily compli-
cated. The key idea is this: The imp gate is constantly being modified. As the imp overruns the imp
gate, no imp instructions are left intact to copy to the next processes’ location. This next process
executes an illegal instruction and dies. This scenario repeats until the entire spiral moves through the
imp gate and disintegrates.

8

--7--

Name: Gate Crashing Spiral
Speed: 12.5% of c (mostly linear)
Size: 5.875
Durability: Very Strong
Effectiveness: Good
Score:

step1 equ 2667
step2 equ 2668
start SPL lnch1
 SPL lnch3

lnch2 SPL 8
 SPL 4
 SPL 2
 JMP imp2+(step2*0)
 JMP imp2+(step2*1)
 SPL 2
 JMP imp2+(step2*2)
 JMP imp2+(step2*3)
 SPL 4
 SPL 2
 JMP imp2+(step2*4)
 JMP imp2+(step2*5)
 SPL 2
 JMP imp2+(step2*6)
 JMP imp2+(step2*7)

lnch3 SPL 8
 SPL 4
 SPL 2
 JMP imp3+(step2*0)
 JMP imp3+(step2*1)
 SPL 2
 JMP imp3+(step2*2)
 JMP imp3+(step2*3)
 SPL 4
 SPL 2
 JMP imp3+(step2*4)
 JMP imp3+(step2*5)
 SPL 2
 JMP imp3+(step2*6)
 JMP imp3+(step2*7)

lnch1 SPL 8
 SPL 4
 SPL 2
 JMP imp1+(step1*0)
 JMP imp1+(step1*1)
 SPL 2
 JMP imp1+(step1*2)
 JMP imp1+(step1*3)
 SPL 4
 SPL 2
 JMP imp1+(step1*4)
 JMP imp1+(step1*5)
 SPL 2
 JMP imp1+(step1*6)
 JMP imp1+(step1*7)

9

imp1 MOV 0,step1
 DAT #0
 DAT #0
 DAT #0
imp2 MOV 0,step2
 MOV 0,step2
imp3 MOV 0,step2
 MOV 0,step2
end start

Gate Crashing Spiral is a collection of three spirals that work together to kill imp gates. The first is a
standard imp spiral and the other two are slightly modified, interleaved for greater protection against
split bombs. The large size of its launch code makes it vulnerable to fast attacks.

HOW IT WORKS: Each spiral has its own binary launch. The first spiral launches first and crawls
forward an instruction by the time the other two spirals have launched. Core then looks like this (after
resetting the counter for clearer exposition):

MOV 0,2667 ;This is label imp1 | MOV 0,2667 | MOV 0,2667
MOV 0,2667 (17) | MOV 0,2667 (18) | MOV 0,2667 (19)
MOV 0,2667 (20) | MOV 0,2667 (21) | MOV 0,2667 (22)
DAT #0,#0 (23) | (24) |
MOV 0,2668 (1) ;This is label imp2 | |
MOV 0,2668 | (2) |
MOV 0,2668 (9) ;This is label imp3 | | (3)
MOV 0,2668 | (10) |
 (4) | | (11)
 | (5) |
 (12) | | (6)
 | (13) |
 (7) | | (14)
 | (8) |
 (15) | |
 | (16) |

The imps then move forward via the usual instruction juggling.

When a gate crashing spiral overruns a gate, the second or third spirals hit first:

MOV 0,2668 (x) ;imp gate here

The gate decrements:

MOV 0,2667 (x)

The wounded spiral copies this instruction 2667 ahead:

MOV 0,2667
 (x+24)
...
MOV 0,2667

The second and third spirals now fall off the end and die, and then the first spiral hits the gate:

MOV 0,2667 (y) ;imp gate here
...
MOV 0,2667 (y+1)

The gate decrements:

10

MOV 0,2666 (y)
...
MOV 0,2667 (y+1)

Process (y) executes, and can’t copy the imp to process (y+1), but this is okay, because process (y+1)
executes the imp instruction from the two spirals gone before. The spiral crawls through the gate and
goes on to kill the enemy processes.

--8--

Name: Nimbus Spiral
Speed: 50% of c (somewhat linear)
Size: 1.992
Durability: Very Strong
Effectiveness: Fair
Score:

step equ 127
imp MOV 0,step
launch SPL 1 ;1 process
 SPL 1 ;2 processes
 SPL 1 ;4 processes
 SPL 1 ;8 processes
 SPL 1 ;16 processes
 MOV -1,0 ;32 processes
 SPL 1 ;63 processes
 SPL 2 ;126 processes
spread JMP @spread,imp
 ADD #step,spread
end launch

Nimbus Spiral launches a 63-point spiral with two processes per point. Because a binary launch would
exceed the 100-instruction limit, Nimbus Spiral uses what is called a Nimbus-type launch. The code
for this type of launch is obviously smaller, but the time it takes to launch spirals is roughly doubled.

HOW IT WORKS: Each SPL 1 command doubles the number of processes acting in tandem at the
next instruction. The first process that executes the MOV -1,0 command does not split, but all subse-
quent processes execute a SPL 1 command. Hence, before execution of the SPL 2 command, core
looks like this (with counter reset):

MOV 0,127
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0 (1)-(126)
JMP @0,-9
ADD #127,-1

After execution of the SPL 2 command:

11

MOV 0,127
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,-9 Odd processes
ADD #127,-1 Even processes

We reset the processes again. Process (1) now executes, jumping to the location of the B-operand of
the JMP instruction:

MOV 0,127 (253) ;this came from process (1)
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,-9 Odd processes greater than 1
ADD #127,-1 Even processes

Process (2) now executes, adding 127 to the B-operand of the JMP instruction:

MOV 0,127 (253)
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,118 Odd processes greater than 1
ADD #127,-1 Even processes greater than 2
 (254) ;this came from process (2)

And it continues. Process (3) jumps to a new location. The even processes modify the jump vector, and
the odd processes do all of the jumping. By the time process (127) is ready to execute, we have the
following situation:

MOV 0,127 (253)
SPL 1,0 (379)
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,-134
ADD #127,-1
 Even processes
...
Odd processes broadcast throughout core

12

The odd processes form an imp spiral and the even processes execute illegal instructions and die,
leaving just the spiral to crawl through memory.

--Conclusion--

Two questions beg to be answered: When should you add an imp to your favorite warrior, and how do
you kill imps?

Most of today’s fighters have some resistance to imps, so pure imp programs seldom are successful.
But imps are easy to add to code that has multiple processes running, like today’s stones, vampires, or
paper. The most successful imp warriors use most of their process time in a more conventional attack,
and rely on the imp-ring as a backup. Whether an imp is a good idea in your program depends on the
program; you may lose less, but you may win less. About the only thing you can be sure of is tying
more. But testing your warrior always helps.

Killing imps is difficult, but not impossible. Imp gates work well against most imps, but should only
be executed after the rest of your code has done its stuff. Imp gates of the form

 SPL 0,<gate
 DAT <gate,<gate

can sometimes kill even gate-crashing imps. Fast bombing programs can occasionally catch the
launching code before it has completed, especially with fancier imps. Code with a long enough
bombing run (e.g. Charon v8.1) can hit and destroy all the imp instructions if it is done right. Dropping
a single MOV 0,<1 bomb on the tail (or vulnerable instruction soon after the tail) of an imp-ring will
kill the entire ring off. Dropping a MOV <2667,<5334 instruction on a 3-point imp ring can kill as
many as 9 imp instructions, and is extremely effective in a stream (which is sequential bombing of
memory). Some programs use an imp trap tailor-made for stunning imp-rings by dropping SPL 0
bombs on the imp-ring using a step size of 2667, so that the ring is attacked from the tail forward.

An enhancement to the imp-launching routines is to add decrement statements to all the b-fields of the
SPL and JMP commands. If you have a large binary launch, for example, you could decrement 63
instructions throughout core for free. Most of the original code I have based this chapter on has such
b-fields.

Here is a list of imp-style programs worth investigating. Unless otherwise noted, they can be found in
warrior10.tar in the 88 directory. Imp-stone combos will be listed in the back of chapter 2.

"The IMPire strikes back" by Anders Ivner (impire)
"Trident" by Anders Ivner (trident)
"Nimbus 1.2" by Alex MacAulay (nimbus12)
"Imps! Imps! Imps!" by Steven Morrell (contact morrell@math.utah.edu)

Program 2, Imp, was written by A.K. Dewdney for his Scientific American articles.

Program 3, Imp Gate, was suggested in its current form by B.Thomsen, and is often called a wimp in
the literature.

13

ftp://ftp.csua.berkeley.edu/pub/corewar/redcode/warrior10.tar.Z

Program 5, Ring, was stolen and modified from a _Push Off_ article from P.Kline, but it looks suspi-
ciously like A.Ivner’s "Trident."

Program 7, Gate Crashing Spiral, was stolen and modified from P.Kline’s "Cannonade."

Program 8, Nimbus Spiral, was stolen and modified from A.MacAulay’s "Nimbus 1.2."

Follow this link to Chapter 2.

14

MY FIRST COREWAR BOOK

Chapter 2: Stones

If you are fast and small, you can find the enemy before the enemy finds you. This is the philosophy of
pattern bombers, a group of warriors much maligned by frustrated corewar enthusiasts trying to make
intelligent warriors. But the fact remains, frenzied maniacs can often kill the slow brooding kind.

Pattern Bombers are also refered to as stones, as part of the stone - scissors - paper analogy. Scissors,
which includes vampires and scanners, are bigger than stones and therefore tend to get beat up by them
more often. Paper, also known as a replicator, is a program that makes copies of itself throughout the
core faster than a pattern bomber can destroy all of them. Stones are thus ineffectual against paper, or
at least they were until W. Mintardjo stuck a two-pass core-clear on one of his stones.

--1--

Name: Dwarf
Author: A.K.Dewdney
Speed: 33.33% of c
Size: 4
Durability: Weak
Effectiveness: Average
Score:

bomb DAT #0
dwarf ADD #4, bomb
 MOV bomb, @bomb
 JMP dwarf
end dwarf

Dwarf bombs every fourth instruction with DAT instructions in hopes that enemy processes will
execute this code and die. Since 4 divides coresize, Dwarf will never drop a bomb on itself. Because
Dwarf only hits every fourth instruction, it is a mod-4 bomber.

HOW IT WORKS: Before anything executes, core looks like this:

DAT #0, #0 ;bomb
ADD #4, -1 (1)
MOV -2, @-2
JMP -2, 0

Then process (1) adds 4 to the B-field of bomb:

DAT #0, #4 ;bomb
ADD #4, -1
MOV -2, @-2 (2)
JMP -2, 0

Process (2) moves bomb 4 instuctions forward, where the B-field of bomb points to:

15

DAT #0, #4 ;bomb
ADD #4, -1
MOV -2, @-2
JMP -2, 0 (3)
DAT #0, #4

Process (3) simply makes the program loop back to the beginning.

DAT #0, #4 ;bomb
ADD #4, -1 (4)
MOV -2, @-2
JMP -2, 0
DAT #0, #4

Process (4) adds 4 to the B-field of bomb:

DAT #0, #8 ;bomb
ADD #4, -1
MOV -2, @-2 (5)
JMP -2, 0
DAT #0, #4

Process (5) drops the next bomb where the B-field of bomb is pointing.

DAT #0, #8
ADD #4, -1
MOV -2, @-2
JMP -2, 0 (6)
DAT #0, #4

DAT #0, #8

Process (6) loops back, and bomb after bomb are dropped forward through core.

--2--

Name: Stone
Author: Matthew Householder
Speed: 33.34% of c
Size: 4
Durability: Weak
Effectiveness: Average
Score:

start MOV <2, 3
 ADD d1, start
 JMP start
 DAT #0
d1 DAT #-5084, #5084
end start

Stone is a mod-4 bomber like Dwarf, but with two important improvements. First, the step-size has
been increased somewhat for better distribution of bombs against larger opponents. Second, Stone
decrements other adresses while it bombs. Decrementing opponent’s code may wound it so that DAT
bombs can destroy it later.

16

HOW IT WORKS: Pre-decrement indirect addressing can be tricky, so we shall use the intuitive
approach, even though it yields wrong results for weird instructions like MOV <0,<1. See "tutorial.2"
or the ICWS ’94 standard for precise details.

When Stone is loaded, core looks like this below. The DAT #0,#0 instruction is used only as a spacer
between the executable code and the other DAT statement, as we shall shortly see.

MOV <2, 3 (1)
ADD 3, -1
JMP -2, 0
DAT #0, #0
DAT #-5084, #5084

The B-field of the JMP instruction (pointed to by the A-field of the MOV instruction) is decremented,
so that it now points to the ADD instruction. This ADD instruction is now moved to the DAT #0,#0
instruction (pointed to by the B-field of the MOV instruction). Core now looks like this:

MOV <2, 3
ADD 3, -1 (2)
JMP -2, -1 ;this has been decremented
ADD 3, -1 ;this has been copied
DAT #-5084, #5084

This last sequence may be a little misleading, because it looks like we are dropping ADD 3,-1 bombs
throughout core. We shall see this is not usually the case.

We now come to the ADD 3,-1 instruction. Since this ADD is not immediate, as it was in Dwarf, the
A-operand of the DAT instruction is added to the A-operand of the MOV instruction and the
B-operand of the DAT instruction is added to the B-operand of the MOV instruction:

MOV <-5082, 5087
ADD 3, -1
JMP -2, -1 (3)
ADD 3, -1
DAT #-5084, #5084

The executing process now jumps back (the -1 in the B-field is ignored).

MOV <-5082, 5087 (4)
ADD 3, -1
JMP -2, -1
ADD 3, -1
DAT #-5084, #5084

Process (4) drops another bomb: the location -5082 behind the MOV instruction is decremented and
whatever it points to is moved 5087 in front of the MOV instruction. The pattern continues until
someone is killed or time runs out.

Stone, then, doesn’t really drop bombs as such, but rather moves instructions around core in a
pseudo-random fashion. But since core is initialized to DAT 0,0, most of the instructions it moves are
deadly DAT statements. This process is called transposition in the literature.

17

ftp://ftp.csua.berkeley.edu/pub/corewar/documents/tutorial.2.Z
http://www.ecst.csuchico.edu/~pizza/koth/icws94.html

--3--

Name: Armadillo
Author: Stefan Strack
Speed: 32.86% of c
Size: 5
Durability: Strong
Effectiveness: Average
Score:

bomb SPL 0
loop ADD #3039, ptr
ptr MOV bomb, 81
 JMP loop
 MOV 1, <-1
end bomb

Armadillo drops SPL 0 bombs throughout core to stun the enemy, and then lays down a DAT carpet
(also called a core-clear) to kill the enemy. This is one of the earliest bombers that used a core-clear to
erase all of memory. It scores 100% wins against Wait (program 1, chapter 1) where Dwarf and Stone
only score 25% wins and 75% ties. In my experience, SPL bombs are the most effective single-instruc-
tion bomb a warrior can drop. However, SPL bombs don’t kill many programs cleanly, don’t allow
you to simultaneously bomb the rest of the core with decrements, and don’t paralyze the opponent as
well as the multi-instruction bombs that scanners drop.

Another innovation in Armadillo is the use of a SPL 0 instruction inside the warrior. If any of the other
instuctions are hit with DAT bombs, the program may not operate correctly, but the bomb doesn’t kill
all of the processes. Additionally, this self-splitting code generates enough processes that imps cannot
kill Armadillo by themselves.

HOW IT WORKS: When Armadillo is loaded into core, it looks like this:

SPL 0, 0 (1)
ADD #3039, 1
MOV -2, 81
JMP -2, 0
MOV 1, <-1

Process (1) splits into processes (2) and (3).

SPL 0, 0 (3)
ADD #3039, 1 (2)
MOV -2, 81
JMP -2, 0
MOV 1, <-1

Process (2) executes and process (3) splits.

SPL 0, 0 (6)
ADD #3039, 1 (5)
MOV -2, 3120 (4)
JMP -2, 0
MOV 1, <-1

Process (4) drops a split bomb, process (5) changes the bombing location, and process (6) splits.

18

SPL 0, 0 (10)
ADD #3039, 1 (9)
MOV -2, -1841 (8)
JMP -2, 0 (7)
MOV 1, <-1

Process (7) jumps back in order to conserve processes, (8) bombs, (9) changes the bombing location,
and (10) splits.

SPL 0, 0 (15)
ADD #3039, 1 (14) (11)
MOV -2, 1198 (13)
JMP -2, 0 (12)
MOV 1, <-1

And so the process continues. The ever-lengthening string of processes executes the code (backwards!)
that drops the SPL bombs. Eventually, a SPL 0,0 gets dropped on the JMP statement:

SPL 0, 0
ADD #3039, 1
MOV -2, 1
SPL 0, 0 (1)
MOV 1, <-1

The loop is broken, and all of the processes fall through to this second SPL instruction eventually. We
examine this last bit of code as if there were only one process running at the SPL instruction, since the
program doesn’t depend on process order from this point on. Process (1) splits:

SPL 0, 0
ADD #3039, 1
MOV -2, 1
SPL 0, 0 (3)
MOV 1, <-1 (2)

Process (2) decrements the B-field of the SPL instruction (which the SPL instruction doesn’t need) and
moves the blank (DAT 0,0) instruction to where the SPL instruction points:

SPL 0, 0
ADD #3039, 1

SPL 0, -1 (3)
MOV 1, <-1
 (4)

Process (3) splits:

SPL 0, 0
ADD #3039, 1

SPL 0, -1 (6)
MOV 1, <-1 (5)
 (4)

Now process (4) executes an illegal instruction and dies, (5) decrements the SPL instruction again and
bombs the next instruction backwards, and (6) splits:

19

SPL 0, 0

SPL 0, -2 (9)
MOV 1, <-1 (8)
 (7)

This pattern repeats until eventually the core clear wraps around and erases itself. Just before this
erasure occurs, core looks like this:

SPL 0, 2 (23997)
MOV 1, <-1 (23996)
 (23995)

Process (23995) dies as usual, but this time, when process (23996) bombs, it erases the bombing
instruction:

SPL 0, 2 (23997)

 (23998)

Now, if we ignore all of the dying processes, we see that this SPL command keeps splitting processes
to itself, keeping the warrior alive.

--4--

Name: Cannonade Stone
Speed: 24.51% of c
Size: 5
Durability: Average
Effectiveness: Good
Score:

 MOV <6, 1
start SPL -1, <5144
 ADD 3, -2
 DJN -2, <5142
 DAT #0, #0
 MOV 190, <-190
end start

Cannonade Stone takes the idea of self-splitting code to another level. Altough it bombs somewhat
slower than other bombers, it splits off processes so quickly that a stun attack on other components of
the warrior will not halt the execution of the stone. The bombing run hits every fifth instruction, with a
transposition at every tenth position and a decrement between each transposition. Additionally, a
DJN-stream is laid through memory, giving another form of attack without increasing the size or speed
of the program. At the end of the bombing run, Cannonade Stone converts into a core-clear and partial
imp-gate.

HOW IT WORKS: When Cannonade Stone is first loaded into memory, it looks like this:

MOV <6, 1
SPL -1, <5144 (1)
ADD 3, -2
DJN -2, <5142
DAT #0, #0
MOV 190, <-190

20

Process (1) splits:

MOV <6, 1 (3)
SPL -1, <5144
ADD 3, -2 (2)
DJN -2, <5142
DAT #0, #0
MOV 190, <-190

Now processes (2) and (3) execute, adding and then bombing like every other stone.

MOV <196, -189
SPL -1, <5144 (5)
ADD 3, -2
DJN -2, <5142 (4)
DAT #0, #0
MOV 190, <-190

Process (4) usually jumps back to the SPL instruction (more on this in a moment), and the pattern
repeats: each process at the SPL command splits into two processes, which add and bomb in rapid
succession.

At the end of the bomb run, the bomber mutates itself into a core-clear. The SPL -1,<5144 instruction
is overwritten with the MOV 190,<-190 instruction. The executng portion of code then looks like this:

MOV 190, <-190
ADD 3, -2
DJN -2, <5142

The first instruction performs the core-clear, the second instruction does nothing of strategic worth,
and the third instruction loops processes back to the first instruction. Additionally, the decrement in
the MOV command sets up a partial (33%) imp-gate 190 instructions before it, and the decrement in
the DJN instruction sets up a second partial (33%) imp gate 2666 instructions before the first one.
Since 2667 is the magic number for 3-point imps, these instructions defend the bomber against 3-point
imps at roughly 67% efficiency.

Let us examine in more detail how the DJN -2,<5142 instruction works. When it is executed, the
predecrement in the B-field decrements the instruction 5142 after the DJN intstruction, which is proba-
bly a DAT 0,0 command:

DJN -2, <5142
...
DAT 0, -1

The DJN instruction now decrements the instruction before that, which probably doesn’t have a
B-value of 1, so the executing process jumps back to the beginning of the loop:

DJN -2, <5142
...
DAT 0, -1 ;this was decremented by the DJN
DAT 0, -1 ;this was decremented by the <

The next time the DJN instruction is executed, the B-field 5142 after the instruction is decremented,
and so is the instruction pointed by that B-field (2 before it):

21

DJN -2, <5142
...
DAT 0, -1 ;this was decremented by the DJN
DAT 0, -1
DAT 0, -2 ;this was decremented by the <

As the DJN instruction is repeatedly executed, a carpet of decrements is laid down backwards through
core.

This is not exactly the pattern that is laid down in core, because the SPL -1,<5144 command decre-
ments the same B-field as the DJN instruction does. This adds gaps in the DJN-stream, making it more
spread out and liable to hit the enemy program. Additionally, it turns the B-field into a better partial
imp-gate.

We have made two assumptions: First, that the instruction 5142 after the DJN instruction is DAT 0,0;
second, that the instruction pointed to by that instruction does not have a B-field of 1. If the first
assumption fails, the worst that can happen is a non-zero B-field, in which case the DJN stream is laid
somewhere else. If the second assumption fails, then the executing process does not jump back and
proceeds instead to an illegal instruction. Fortunately, this is just one of many processes, so the
bombing loop is not seriously affected. This result may be compunded, however, if the enemy has lots
of B-fields with value 1.

--5--

Name: Night Crawler Stone
Author: Wayne Sheppard
Speed: 32.86% of c
Size: 4
Durability: Strong
Effectiveness: Good
Score:

start SPL 0, <-1001
 MOV <21, 1+2234
 SUB 1, -1
 DJN -2, <-2234
end start

Night Crawler Stone is a self-splitting mod-2 bomber with a DJN-stream. When it finishes its bombing
run, it turns into code that performs an addition core-clear.

HOW IT WORKS: Night Crawler Stone bombs memory similarly to Stone, with the obvious improve-
ments that Night Crawler Stone bombs in a tighter mod-2 pattern, is self-splitting, uses a DJN-stream,
and embeds the bombing step size in the executing code, making it one instruction smaller.

After the SPL 0,<-1001 instruction has split off about 144 processes into the main loop, it is bombed,
making the effective size of Night Crawler Stone only 3 instructions long. Just before the bomber hits
the bombing loop, the SUB 1,-1 instruction is decremented, starting an addition core-clear.

Unlike traditional core-clears, the addition core-clear doesn’t overwrite core with DAT statements.
Instead, it modifies the A- and B-fields of the instructions to mess up the enemy’s control structures.
For example, a SPL 0 that survived the bombing run becomes a SPL 2 which will not hold processes
by itself. An addition core-clear is only slightly less effective than a traditional core-clear, and requires
no additional instructions to run.

22

Just before the addition core-clear takes effect, Night Crawler Stone looks like this:

DAT 0, -1
MOV <1, 3895 (12938) (12941) ...
SUB 1, -1 (12940) (12943) ...
DJN -2, <-2234 (12939) (12942) ...

Process (*38) executes, decrementing the SUB instruction and doing a copy:

DAT 0, -1
MOV <1, 3895 (12941) ...
SUB 1, -2 (12940) (12943) ...
DJN -2, <-2234 (12939) (12942) ...

Process (*39) executes, laying down another decrement in the DJN stream. Process (*40) then
executes, changing the A- and B-operands of the DAT statement:

DAT 2, 2233
MOV <1, 3895 (12941) ...
SUB 1, -2 (12943) ...
DJN -2, <-2234 (12942) ...

Process (*41) executes, decrementing the SUB instruction again, and then (*43) modifies the operands
of the next instruction back:

DAT 2, 2234
DAT 2, 2233
MOV <1, 3895
SUB 1, -3
DJN -2, <-2234

So goes the core-clear, until at the end the DJN instruction is hit and turns into DJN 0,<0, where all of
the processes go and execute repeatedly, laying down a DJN stream until time expires.

--6--

Name: Keystone Stone
Speed: 32.86% of c
Size: 5
Durability: Strong
Effectiveness: Good
Score:

step equ 2517
emerald SPL 0, <-25
 MOV <-step+1, 92
 SUB 2, -1
 DJN -2, <2002
 JMP step, <-step
wait DJN 0, <-12
paper DJN 0, <-12
boot MOV emerald+4, paper-step
 MOV emerald+3, <boot
 MOV emerald+2, <boot
 MOV emerald+1, <boot
 MOV emerald, <boot
 MOV wait, paper+3053
 JMP @boot
end boot

23

After initialization, Keystone Stone bombs with a mod-1 pattern which approximates mod-4. If paper
is detected, processes are split to the label "paper," where some code can be inserted to withstand
paper attacks. When the bombimg run is over, Keystone Stone turns itself into an imp gate. (P.Kline’s
Keystone uses this gate as a backup strategy. Under normal operation, an external core-clear erases
this stone.)

HOW IT WORKS: To set things up, the imp-gate (labelled "wait") needs to be copied away from the
main block of code. Rather than adding an instruction to the main block to do this, the boot-strapping
code (imaginatively labelled "boot") copies the stone and the imp-gate away from itself.

This has two advantages when fighting warriors that search through memory for the enemy. First, the
copied code containing the executing stone is kept small, making it more difficult to locate. Second,
the original code acts as a decoy for the enemy. In fact, many programs pad the block of original code
with nonsense instructions to make a larger decoy for the enemy to grapple with. Almost all modern
stones use boot-strapping and decoys to slow down the enemy.

When the initialization is finished, the stone starts a typical bombing run. If a process executing the
DJN instruction finds a B-operand of 1, it falls out of the loop, executes the JMP instruction, and ends
up at the label "paper," where some paper-stomping code should be inserted. The rationale behind this
is that typically only paper has a B-operand of 1.

The bombing run ends with the DJN -2,<2002 instruction being hit, but not with a typical DAT bomb.
Because of clever planning, the imp-gate instruction overwrites the DJN -2 instruction. The bomber
now looks like this:

SPL 0, <-25
MOV <-step+1, 2
SUB 2, -1
DJN 0, <-12
JMP 2517, <-2517

Nearly all of the processes in the stone end up executing the DJN 0 instruction, forming an imp-gate.
Along with killing imps, this imp-gate lays down a DJN-stream for extra program mangling. And
processes falling through the DJN instruction don’t matter much, because the SPL 0 instruction slowly
generates new processes.

--7--

Name: Winter Werewolf
Author: W. Mintardjo
Speed: 25% of c
Size: 7
Durability: Weak
Effectiveness: Excellent
Score:

step equ 153
init equ 152
n equ ((12*8)-2)
data DAT <-4-n, #0
split SPL 0, <-3-step-n
main MOV jump, @3
 MOV split, <2
 ADD #step, 1
 JMP main, init

24

 MOV @-4, <n
jump JMP -1, 1
boot MOV main+5, -500+5
 MOV main+4, <boot
 MOV main+3, <boot
 MOV main+2, <boot
 MOV main+1, <boot
 MOV main, <boot
 MOV main-1, <boot
 MOV data, boot-500-3-n
 JMP boot-500
end boot

Winter Werewolf is a mod-8 bomber more in the spirit of Armadillo than Stone -- it drops specialized
bombs througout core to stun the enemy, and then kills the enemy with a core-clear. It outscores
Armadillo in three major aspects: It drops a more effective SPL/JMP bomb, it uses a two-pass
core-clear, and it degrades into a perfect imp-gate to mop up any stray imps. The first pass of the
core-clear lays down a SPL 0 stream to make sure the enemy is Really Stunned, and the second pass of
the core-clear lays down DAT statements that kill the enemy. Winter Werewolf was one of the first
modern programs that could compete against imp-rings.

HOW IT WORKS: After the boot-strapping routine, Winter Werewolf looks like this:

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3 (1)
MOV -2, <2
ADD #153, 1
JMP -3, 152
MOV @-4, <94
JMP -1, 1

The next two instructions drop a SPL/JMP bomb. Fist the JMP -1,1 instruction is copied:

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3
MOV -2, <2 (2)
ADD #153, 1
JMP -3, 152
MOV @-4, <94
JMP -1, 1
...
JMP -1, 1

The next instruction decrements the bomb pointer and copies the SPL 0,<-250 instruction to the new
location:

25

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3
MOV -2, <2
ADD #153, 1 (3)
JMP -3, 151
MOV @-4, <94
JMP -1, 1
...
SPL 0, <-250
JMP -1, 1

The next instruction changes the bomb pointer in preparation for dropping the next bomb.

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3
MOV -2, <2
ADD #153, 1
JMP -3, 302 (4)
MOV @-4, <94
JMP -1, 1
...
SPL 0, <-250
JMP -1, 1

Finally, the JMP instrction loops to bomb the next location. The B-operand of the JMP instruction is
ignored, allowing it to be used as the bomb pointer. The bombing run hits every eighth locoation with
one of these bombs. The big trick at this point is to have the program bomb itself without getting
trapped in a SPL/JMP loop itselfÈthe bombing run is over, the program looks like this (if we reset the
process counter):

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3 (1)
MOV -2, <2
ADD #153, 1
JMP -3, 0
MOV @-4, <94
JMP -1, 1

When this first instruction is executed, the bomb pointer is bombed with the JMP -1, 1 instruction.

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3
MOV -2, <2 (2)
ADD #153, 1
JMP -1,1
MOV @-4, <94
JMP -1, 1

But, since the B-field of the bomb pointer just got changed to 1, the next bomb hits the bomb pointer,
too. Remember, first the pointer is decremented...

26

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3
MOV -2, <2
ADD #153, 1
JMP -1,0
MOV @-4, <94
JMP -1, 1

...and then the SPL bomb is dropped.

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3
MOV -2, <2
ADD #153, 1 (3)
SPL 0, <-250
MOV @-4, <94
JMP -1, 1

Now the most subtle command of the whole program executes: The B-field of the new SPL 0,<-250
command is altered. We shall see later why this is important.

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3
MOV -2, <2
ADD #153, 1
SPL 0, <-97 (4)
MOV @-4, <94
JMP -1, 1

Now the core-clear begins. The SPL 0,<-97 instruction splits off processes and the JMP -1,1 instruc-
tion speeds up the core-clear, but it is the MOV @-4,<94 command that does the actual core-clear, and
this deserves further comment.

The A-field of the MOV @-4,<94 instruction points to the MOV 5,@3 command that points to the
SPL 0,<-97 instruction. Since the A-field uses indirect addressing, we are carpteing the core with SPL
0,<97 instructions for now. If the B-field of the MOV @-4,<94 instruction pointed to an instruction
with zero B-field, this would yeild a very short (93 instruction) core-clear before the MOV command
erased itself. But because of the bombing run, the B-field points to a SPL 0,<-250 command. So the
pointers look like this:

 <---------------------------------
... |
DAT <-98, #0 |
... |
SPL 0, <-250 |
MOV 5, @3 ---- <---- |
MOV -2, <2 | | |
ADD #153, 1 | | |
SPL 0, <-97 <---- | |
MOV @-4, <94 A-field--- B-field--- |
JMP -1, 1 | |
... | |
SPL 0, <-250 <--------------------- ---

27

After the first process executes the MOV @-4,<94 instruction, the pointers look like this:

SPL 0, <-97 <--------------------------
... |
DAT <-98, #0 |
... |
SPL 0, <-250 |
MOV 5, @3 ---- <---- |
MOV -2, <2 | | |
ADD #153, 1 | | |
SPL 0, <-97 <---- | |
MOV @-4, <94 A-field--- B-field--- |
JMP -1, 1 | |
... | |
SPL 0, <-251 <--------------------- ---

And after the second process executes this instruction, the pointers look like this:

SPL 0, <-97 <--------------------------
SPL 0, <-97 |
... |
DAT <-98, #0 |
... |
SPL 0, <-250 |
MOV 5, @3 ---- <---- |
MOV -2, <2 | | |
ADD #153, 1 | | |
SPL 0, <-97 <---- | |
MOV @-4, <94 A-field--- B-field--- |
JMP -1, 1 | |
... | |
SPL 0, <-251 <--------------------- ---

And so the core-clear goes, filling the entire core with SPL 0,<-97 commands, until the B-field pointer
gets overwritten:

DAT <-98, #0
...
SPL 0, <-250
MOV 5, @3 ---- <----
MOV -2, <2 | | <-------------
ADD #153, 1 | | |
SPL 0, <-97 <---- | |
MOV @-4, <94 A-field--- B-field--- |
JMP -1, 1 | |
... | |
SPL 0, <-97 <---------------------- ---

This is where the ADD instruction mentioned above becomes so vital. If this pointer were overwritten
by a SPL 0,<-250 command, the SPL core-clear would repeat, and the program would never get
around to killing off the opponent.

Note that the new pointer value skips over most of the core-clearing code, allowing the program to
start a second core-clear. And the next iteration of MOV @-4,<94 does even more pointer magic,
overwriting the A-field pointer with the SPL 0,<-97 instruction:

28

DAT <-98, #0 <---
... |
SPL 0, <-250 |
SPL 0, <-97 ---- <---- <-------------
MOV -2, <2 | |
ADD #153, 1 | |
SPL 0, <-97 | |
MOV @-4, <94 A-field--- B-field--- |
JMP -1, 1 | |
... | |
SPL 0, <-98 <---------------------- ---

Because the A-field pointer now points to the DAT <-98,#0 command, this bomb is dropped next:

DAT <-98, #0 <---
... |
DAT <-98, #0 | <--------------------
SPL 0, <-97 ---- <---- |
MOV -2, <2 | |
ADD #153, 1 | |
SPL 0, <-97 | |
MOV @-4, <94 A-field--- B-field--- |
JMP -1, 1 | |
... | |
SPL 0, <-98 <---------------------- ---

This starts the second core-clear, using DAT statements to finally kill the enemy processes. Like the
first core-clear, this one continues until it wraps around and overwrites the B-field pointer again:

DAT <-98, #0 <---
... |
SPL 0, <-97 ---- <----
MOV -2, <2 |
ADD #153, 1 |
SPL 0, <-97 |
MOV @-4, <94 A-field--- B-field---
JMP -1, 1 |
... |
DAT <-98, #0 <---------------------

But this time, the new pointer does not cause the coreclear to skip the code. The core-clear continues
until the MOV @-4,<94 instruction overwrites itself with the DAT <-98,#0 instruction:

SPL 0, <-97
MOV -2, <2
ADD #153, 1
SPL 0, <-97
DAT <-98, #0
DAT <-98, #0

The SPL 0,<-97 instruction keeps splitting processes to itself, keeping the program alive. The only
other instruction that executes is the next one, which kills off all of the processes that execute it. Both
of these instructions decrement the same instruction before the executing code, forming an imp-gate to
kill off any remaining imp-spirals the enemy might have.

29

--Conclusion--

One factor that could mean the difference between a top-rate stone and an unsuccessful stone is the
choice of step size. The program that manages to bomb the enemy first has a decided advantage, and
some bombing step sizes are more efficient at scanning for the enemy than others. So what makes a
good step size?

Ideally, it ought to hit every location in 8000 bombs, every other location in 8000/2=4000 bombs,
every third location in 8000/3=2667 bombs, etc. Unfortunately, this is impossible, especially with a
single step size, but it suggests a basic strategy -- go for the biggest programs first and then fill in the
gaps.

One way of rating the efficiency of a step size is to find the length of the largest unbombed section of
code after each bomb is dropped. By adding up all of these lengths, we get a number that tells us how
big an average gap is. (Indeed, by dividing this number by the number of bombs dropped, we get the
average gap size.) If we minimize this number over all step sizes, we get the "Optima Numbers." For a
coresize of 8000, these optima numbers are:

 mod-1 3359/3039 under-100 -> 73
 mod-2 3094/2234 under-100 -> 98
 mod-4 3364/3044 under-100 -> 76
 mod-5 3315/2365 under-100 -> 95
 mod-8 2936/2376
 mod-10 2930/2430

The constant for Night Crawler Stone, for instance, is taken from this table.

Another common rating is how closely to in half the new bomb subdivides the old gap when it is
dropped. By taking the differences between where the bombs fall and the middle of each gap and
adding these distances up, we get an alternate method for testing efficiency.

Both of these methods are useful for finding general-purpose step sizes. But suppose you wanted to
find a step size optimized for killing other stones. Since stones usually have four or five instructions,
you would want a step size that would bomb every 4th and 5th instruction quickly, regardless of how it
does in general.

Fortunately, there is a program in the public domain that calculates all of these things quicky. Corestep
by Jay Han can be found as misc/corestep.c, and calcutates optima numbers and optimal step sizes.
You will need a C compiler to use it, but it is otherwise self-contained. For more infromation, FTP a
copy and read through it. The classic formula calculates optima numbers, the alternate formula calcu-
lates the sum of the distances between bombs and midpoints, and find-X calculates optimal step sizes
against a specific program length.

If you don’t have access to a C compiler or want this for some other reason, P. Kline has compiled a
list of all 8000 step-sizes with their mod, find-4, find-5, find-10, and find-13 numbers, along with
imp-killing constants and imp-numbers. This table is designed for use in spreadsheets or databases. It
is available in the misc/ directory under the name num8000.txt with documentation in num8000.doc.
He used this on Keystone Stone to come up with a mod-1 constant with a low find-4 score, so that it
would act like a mod-4 bomber but interfere with enemy scans (more about this in the next chapter).

30

ftp://ftp.csua.berkeley.edu/pub/corewar/misc/corestep.c
ftp://ftp.csua.berkeley.edu/pub/corewar/misc/num8000.txt
ftp://ftp.csua.berkeley.edu/pub/corewar/misc/num8000.doc

Here is a list of successful stones. All of these can be found in warrior10.tar in the 88 directory, except
for SJ-4A and Keystone t21, which are buried deep within the file feb94.txt.Z (in the newsgroup direc-
tory last time I checked.) Everything here by P.Kline has an anti-vamp component, which will be
talked about in a later chapter.

"Leprechaun 1b" by Anders Ivner (leprechaun)
"Emerald 2" by P.Kline (emerald2)
"ExtraExtra 2" by P.Kline (extra2)
"Keystone t21" by P.Kline
"SJ-4A" by J.Layland
"Moonstone 1" by Dan Nabutovsky (moonstone)

Self-splitting stones with imp-rings can be very effective. Here is a list of imp-stone combos that are
worth investigating. All of them except Cannonade can be found in warrior10.tar, and Cannonade can
be found in the feb94.txt.Z file.

"Cannonade" by P.Kline
"Imprimis 6" by P.Kline (imprimis6)
"Night Crawler III" by Wayne Sheppard (nightcrawl)
"Sphinx 2.8" by W. Mintardjo (sphinx)

Program 1, Dwarf, was written by A.K. Dewdney for his Scientific American articles.

Program 2, Stone, was taken from the ICWS 1990 corewar tournament. It bears a remarkable resem-
blance to Rock by Scott Nelson, which was posted to the net a couple of months before the tourna-
ment. Strange, eh?

Program 4, Cannonade Stone was extracted from P.Kline’s Cannonade.

Program 5, Night Crawler Stone without the SPL 0 was submitted as "No Ties Allowed," and
confused the experts as to how something so deadly could fit into 3 lines.

Program 6, Keystone Stone, was stolen from P.Kline’s "Keystone t21." The bootstrapping code in the
example differs somewhat from the bootstrapping code used in Keystone.

Program 7, Winter Werewolf, originally did not copy the stone away from a decoy. I am led to specu-
late that the code as it exists here with a bigger decoy resembles Winter Werewolf 3, a program that
was very successful on the hill.

31

ftp://ftp.csua.berkeley.edu/pub/corewar/redcode/warrior10.tar.Z
ftp://ftp.csua.berkeley.edu/pub/corewar/newsgroup/feb94.txt.Z

	MY FIRST COREWAR BOOK by Steven Morrell
	PREFACE
	Chapter 1: Imp-Rings
	--1--
	--2--
	--3--
	--4--
	--5--
	--6--
	--7--
	--8--

	--Conclusion--

	MY FIRST COREWAR BOOK
	
	Chapter 2: Stones
	--1--
	--2--
	--3--
	--4--
	--5--
	--6--
	--7--

	--Conclusion--

