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From Programs to Object Code
and back again using Logic Programming:
Compilation and Decompilation

Summary

A compiler may be specified by a description of how each construct of the source
language is translated into a sequence of object code instructions. It is possible to
produce a compiler prototype almost directly from this specification in the form of a
logic program. This defines a relation between allowed high-level and low-level pro-
gram constructs. Normally a high-level program is supplied as input to a compiler
and object code is returned. Because of the declarative nature of a logic program,
it is possible for the object code to be supplied and the allowed high-level programs
returned, resulting in a decompiler, provided enough information is available in the
object code. This paper discusses the problems of adopting such an approach in
practice. A simple compiler and decompiler are presented in full as an example in
the logic programming language Prolog, together with some sample output. The
possible benefits of using constraint logic programming are also considered. Poten-
tial applications include reverse engineering in the software maintenance process,
verification of safety-critical object code, quality assessment of code and program
debugging tools.

Keywords: Reverse Engineering  Decompilation  Logic Programming Pro-
log  Compiler Prototyping Constraint Logic Programming



1 Background
A compiler may be specified as a relation
CpoV¥

where p represents a high-level source program, o are the low-level object code
sequences that are allowed for the corresponding source program, and ¥ is a symbol
table that relates the high-level variables to their positions in memory. It is possible
to define an ordering on programs such that a program is considered ‘better’ than
another if it is more deterministic and terminates more often. If the semantics of the
object code is defined in terms of an interpreter in the high-level language then it
is possible to conduct proofs in an algebraic style using laws about the language to
transform the source program constructs into a corresponding interpreter and object
code that is equivalent or better than the original code. Compilation specifications
for individual programming constructs may be specified as theorems and proved
using a set of algebraic laws (which may themselves be derived from a specification-
oriented semantics).

The above approach is the one adopted on the ESPRIT Basic Research ProCoS
project (Bjgrner, 1992, Bjorner et al., 1992), and is detailed more fully in (Hoare et
al., 1990b). The compilation theorems are in general in the form of Horn clauses
allowing an almost direct implementation as a logic program in a language such
as Prolog (Bowen, 1992). Since the clauses in a logic program in principle define
a relation between the parameters, it is possible to derive both a compiler and a
decompiler, depending on whether a source program or object code are supplied as
input, with a little ingenuity to ensure termination and by restricting the programs
returned to ones of interest (since the number can and is in general infinite) (Breuer
et al., 1992a, Breuer et al., 1992c, Bowen et al., 1993a).

Whilst the concept of a compiler is widespread, the idea of a decompiler is more
novel. This allows defined object code sequences to be mapped back to high-level
constructs. This could have applications in the following areas:

e It may be useful in the software maintenance process to reverse engineer ex-
isting object code back to a high-level representation to gain understanding of
the code, particularly if the original source code has been lost.

o It could be beneficial in the validation or verification of safety-critical code.
Here the compiler may not be considered trustworthy enough and it may be
desirable to validate the low-level object code rather than the original source
code since this is the code that actually defines the operation of the processor.

e It could be used in the quality assessment of code, for example, to discover
how well structured it is, or a variety of other desired metrics.



o Currently debuggers routinely disassemble machine code back to a higher-level
assembly language representation to aid the debugging process. It could be
helpful to obtain an even higher-level representation of the code in the form of
a structured high-level program. This could automatically search for structure
in the code and display the most appropriate program to the software engineer
to help his/her understanding of the operation of the code. This would in
general require knowledge of the original compiler and also the symbol table
of the program.

1.1 Existing work

Literature on decompilation is extremely hard to find. However, decompilation may
be useful when reverse engineering is required for part of the software maintenance
process to gain understanding of the object code. For example, the REFORM project
has produced a maintainer’s assistant which is based upon transformation of assem-
bly language code into a wide-spectrum language (Ward et al., 1989).

Decompilation has always been of interest when compilers have been used in
safety-critical systems (Bowen et al., 1993b), to add an extra level of confidence that
the low-level object code produced by a compiler does indeed correspond correctly
to the high-level program (Clutterbuck et al., 1988). For example, IBM produced
a decompiler for the NASA Space Shuttle software (Spector et al., 1984). They
worked on a tool to decompile memory images and compare the results with the
original inputs. More recently, Nuclear Electric in the UK have used decompilation
techniques to verify significant amounts of safety-critical code (Pavey et al., 1992).
They first disassemble Intel PL/M-86 compiler object code. This and the source
code are converted into a common language (MALPAS IL) and the two can be
compared for consistency using static analysis techniques. There are limitations to
this approach, but it appears to be a practical method to increase the confidence
in the correctness of the code produced by an unverified (commercially available)
compiler.

1.2 Legal concerns

Decompilation may be considered illegal, especially when applied to a third party’s
product (Samuelson, 1990). For example, the desktop publishing package Frame-
Maker™ displays the following message in its on-screen licensing information:

You may make and distribute identical copies of the FrameMaker
distribution tape provided that you do not attempt to

(1) decompile or decipher the software,

(2) develop passwords for the software, or

(3) otherwise enable the Save feature yourself,



and provided that you do not permit others to do so.

The introduction of law in this area is fraught with problems. For example, a
new UK law, The Copyright (Computer Programs) Regulations 1992 (UK Govern-
ment, 1992), on software copyright came into force on 1st January 1993 to meet a
European directive. It modifies the Copyright, Designs and Patents Act 1988 which
allowed for the “decompilation” of programs for research or private study. The new
law could affect that right in future. Note that in the UK all programs are automati-
cally copyrighted so changes in the law could have far-reaching and even unexpected
implications.

2 Introduction

This paper demonstrates a possible method of reverse engineering of object code to
a high-level representation of the program. This could be useful if, for example, the
original source code has been lost. This is an extension of other ideas of reverse
engineering conceived on the ESPRIT II REDO project (van Zuylen et al., 1993), a
collaborative project of 11 industrial and academic partners concerned with software
maintenance (Breuer et al., 1991, van Zuylen et al., 1993). In particular, work on
converting (high-level) code to Z specifications has been undertaken by others on
the project (Lano et al., 1990). Combining the two approaches could allow the
specification of an object program to be generated, with some guidance from a
software engineer.

The first part of the paper briefly introduces the mathematical foundations of
logic programming, and Prolog in particular. Then a compiling specification for a
simple imperative programming language is presented in the form of a set of theorems
which may be verified formally if desired. A compiler and decompiler prototype in
Prolog, based on this specification, are included virtually in their entirety, together
with some sample output. A discussion on the possible benefits of using constraint
logic programming (CLP) and a simple CLP compiler/decompiler are presented.
Finally some conclusions are drawn on the possible applicability of the method in
practice.

3 Logic programming and Prolog

As the name suggests, logic programming has a well established mathematical basis
(Lloyd, 1987, Hogger, 1990, van Emden et al., 1976). Prolog (Clocksin et al., 1987)
is the most widely available logic programming language. However, Prolog includes
many non-logical features in an attempt to make it into a practical programming
language. Even so, if the features used in Prolog are restricted, it is possible to use
it in a logical manner. For example, the Prolog Horn clause



P .- Ql,...,Qn.

is equivalent to the following formula in first order predicate logic:

Ve,y,... (L AN...N Q) = P)

where z,y, ... are all the free variables in the predicates P and @; (1 < i < n). Note
that the ‘:-" of Prolog can be considered as a reverse implication (<) in predicate
logic. This theorem is in turn equivalent to:

Vay, ..,z (Fyr, ooy Ym - QL Ao AN Q) = P)

where 1, ..., z; are the free variables in P (normally mentioned in the @); predicates
as well) and y1, ..., y, are the variables mentioned in ); but not in P. The quanti-
fiers may be omitted when there are no relevant free variables. Additionally, if there
are no (J; clauses, this part of the formula reduces to true and the implication may
be omitted since true = P = P. Such formulae, in which all the variables are set
to some specific value are known as facts (Clocksin et al., 1987).

A set of such clauses form a program. Queries (or goals) may be posed to this
program as the conjunction of a set of goal clauses

7= Gry...,Gy.
This is equivalent to the following in predicate logic
- Elyl,...,ym'(Gl AL A Gn)

The Prolog system searches for a contradiction to this clause. If it finds one (or
more), these are output successively as they are discovered. A very simple left-to-
right and depth first search of the database of clauses is used. This can result in
non-termination in practice if a search is made down an infinite branch of the proof
tree. Thus some judicious ordering of the clauses is often necessary to ensure that
an answer is found in finite time.

Using the form of clauses described above results in a restricted form of predicate
logic. Note in particular that none of the ¢); and G; predicates may be negated
(e.g., 7Q;). In practice this can be too much of a limitation sometimes, and the
restricted form of negation, negation by failure, is normally allowed Prolog (Lloyd,
1987, Quintus, 1990). This type of negation normally limits the modes in which the
logic program can be used (i.e., which variables must be instantiated, and which can
be left uninstantiated). In practice this may not be too restrictive since the logic
program can be designed knowing which variables are to be inputs and outputs.
Where negation is necessary in the logic program presented in this paper, its use is
justified informally.



3.1 An example

Prolog consists of Horn clauses, which are a special case of predicates specifying
relations between their parameters. Because of this declarative nature of Prolog
it is possible in theory to run clauses ‘backwards’ as well as ‘forwards’. l.e., the
inputs (supplied ‘instantiated’ parameters) and outputs (unknown ‘uninstantiated’
parameters) to a clause may be reversed. This works well for some simple examples.
Consider the well-known append program in Prolog:

append([],T,T).
append([X|S],T,[X|U]) :- append(S,T,U).

The second parameter may be appended to the first parameter to form the third
parameter:

| ?- append([a,b],[c],L).
L = [a,b,c] ;
no
The first or second parameter can equally well be uninstantiated instead:
| ?- append(L,[c],[a,b,c]).
L = [a,b] ;

no
| ?- append([a,b],L,[a,b,c]).

L = [c] ;
no

In fact both the first two parameters can be unknown and all possible combinations
of lists which when appended together form the third list are returned:

| ?- append(L1,L2,[a,b,c]).

L1 =[],
L2 = [a,b,c] ;
L1 = [a],



L2 = [b,c] ;
L1 = [a,b],
L2 = [c] ;
L1 = [a,b,c],
L2 = [1 ;

no

However more complicated programs can exhibit non-termination when run in
certain modes due to the simplistic left-to-right and depth-first search strategy of
Prolog. This can be alleviated by reordering clauses appropriately, or adding the
infamous cut pseudo-predicate (‘!’) at suitable points in the program. Unfortunately
the latter can destroy the logical meaning of the program if used inappropriately by
removing logically valid answers. This paper avoids the use of cuts so they will be
mentioned no further, although in a more realistic example their use would probably
become a necessity for efficiency reasons.

3.2 Compiler writing in Prolog

The idea of using Prolog (Clocksin et al., 1987) for the construction of compilers has
been accepted for some time (Warren, 1980). Advantages include the fact that the
code for the compiler can be very close to the compiling specification since Prolog is
based on logic (Lloyd, 1987) and thus the confidence in its correctness is increased.
It can be used as a prototype compiler and even as a ‘real’ compiler; the Prolog
code itself may be compiled into optimized code for increased efficiency (Quintus,
1990). Prolog has been found to be particularly good for code generation and almost
as eflicient as using a high-level imperative programming language such as Pascal
(Paakki, 1991).

In theory, a compiler written in Prolog could also be run backwards. In practice,
much care needs to be taken if this approach is adopted. Even ‘pure’ Prolog is neither
sound (there is no occurs check in the unification algorithm used) nor complete
(because of its search strategy) despite its background in logic programming (Lloyd,
1987). These compromises have been made for efficiency reasons. However with
judicious and sensible recoding and reordering of clauses it is possible to produce a
decompiler from a Prolog compiler. Normally this will only work with the output of
a particular compiler, although it would be possible to search for common control
structures in arbitrary object code and return some sort of higher-level representation
of these.



4 Compiling specification

A simple compiling specification is presented here for completeness. For further
information and a proof of correctness of each of the theorems below, see (Hoare et
al., 1990a) from which this specification is extracted. Later sections in this paper
present a compiler and decompiler based on this specification.

The object code is given by m[s : f), where m is the code store, s is the starting
address and f is the finishing address (immediately after the object code) for execu-
tion. V¥ is a symbol table consisting of a finite injection (a one-to-one function) from
variable names to locations.

The object code instruction set consists of load(n), store(n) for loading and stor-
ing an accumulator from and to memory, and jump(j) and cond(j) for unconditional
and conditional jumps. These are defined formally in (Hoare et al., 1990a) and
presented more informally as a high-level program in section 5.

Compiling specification theorems are presented as special cases of a relation C
between a high-level program construct p, the matching object code m[s : f), and
the symbol table V.

Cpml[s: f)¥

The program SKIP may be compiled to nothing:

Theorem 1 {SKIP}
CSKIP m[s : s)¥

Object code allowed for a particular high-level construct need not be unique. For
example, SKIP may also be implemented by a forward jump:

Theorem 1la
If s < f and m[s] = jump(f) then C SKIP m[s : f)V.

Sequential composition depends on compiling two subprograms contiguously in mem-
ory:

Theorem 2 {composition}

Ifs<j<fandCpm[s:j)¥ and Cgm[j : f)¥ then C(p; ¢)m[s: f)¥

Conditional and looping constructs may be compiled in the traditional manner:

Theorem 3 {conditional}
If s42 < j < fand m[s] = load(V(b)) and m[s+1] = cond(j) and m[j—1] = jump(f)



and Cpym[s+2:j— 1)V and Cpam[j : f)¥
then C( IF b THEN p; ELSE py)m/[s : f)¥

Theorem 4 {while}

If s+1<f—1and m[s] = load(¥(b)) and m[s + 1] = cond(f)
and m[f — 1] = jump(s) and Cpm[s+2: f — 1)¥

then C(WHILE DO p)m[s : f)¥

Non-determinism allows the implementor to chose between more than one program:

Theorem 5 {non-determinism }

If Cpmls: f)¥ then C(p N g)m[s: f)¥

Theorem 5a

IfCqgm[s:f)V then C(p M ¢)m[s: f)V¥

If the program aborts, any object code can be generated. Thus the memory is not
constrained in any way and the symbol table is also immaterial:

Theorem 6 {ABORT }
C ABORT m[s : f)¥

Fach declared variable is distinct from all other global variables:

Theorem 7 {declaration}
If® = {v} 9V and Cpm[s: f)¥ then C(VAR v; p; END v)m[s: f)®

® is the same as ¥ except that the entry for the variable v is removed.
A simple example of assignment is included here. In practice, expressions would
normally be allowed on the right hand side.

Theorem 8 {assignment}

If m[s] = load(¥(y)) and m[s + 1] = store(¥(z)) then C(z := y)m[s : s + 2)¥

Recursion is considerably more complex than the previously presented theorems, but
is included here as an example of a more complicated construct. Extra instructions
push(f), subr(s+ 1) (which is equivalent to push(j 4+ 1);jump(s +1)) and return are
required to implement recursion using subroutine calls and returns, with the return
addresses stored on a stack. These are formally defined in the appendix of (Hoare
et al., 1990a).



Theorem 9 {recursion}

If m[s] = push(f) and m[f — 1] = return and

VXe(Vje[s+1l:f—1)e(m[j]=subr(s+1) = CXm[j:j+1)¥)
= CP(X)m[s+1:f-1)¥)

then Cpu X.F(X)m[s: f)¥

This results in code of the following form:

s—1]s s+1 7 jt+1 f—-11\f
push(f) | ... subr(s+1) | ... return

Note that the code is produced in-line and recursive calls re-enter the code at location

s+ 1.

5 Compiler prototype

Most of the rest of this paper presents a logic program in the programming language
Prolog (Clocksin et al., 1987) which implements the previously presented compiling
specification as a compiler and also a decompiler prototype. (It is assumed that the
reader has a basic knowledge of logic programming, and Prolog in particular.) By
restructuring the forward compiler slightly, it is possible to produce a decompiler.
Some of the practical problems of this approach will be discussed.

Prolog allows operators to be defined with a specified precedence, position (prefix,
postfix or infix) and associativity. This obviates the need for a parser for the high-
level programming language, which may be coded in the following form, for example,
for direct use by Prolog:

p := s;
while (s<=p) /\ (p<f) do
if m(p) = load(n) then [a,p]:=[m(n),p+1]
else if m(p) = store(n) then [m(n),p]:=[a,p+1]
else if m(p) = jump(j) then p:=j
else if m(p) = cond(j) then (if a then p:=p+l else p:=j)
else abort;

{p = £}

The above example shows an interpreter for the basic instruction set of the example
object code used in this paper. (‘p’is the program counter and ‘a’is an accumulator.)
The compiler presented in this paper does not accept the full syntax shown above,
although it could easily be extended to do so.



5.1 Compiling clauses

Fach theorem is coded as a separate clause. For this simple language, the form of
each theorem in section 4 may be followed almost exactly. However Prolog provides
functors (essentially trees) for data structures, with a special syntax for the con-
venience of constructing lists, so some data refinement is necessary to implement
the compiler. The source program is defined using a number of infix and postfix
operators to aid readability. The object code is modelled as a list of tuples, each
of the form n->instr where n is a memory location (a natural number) and instr
is the opcode at that location (e.g., load(z), store(z), etc.). The starting and
finishing object code memory addresses are natural numbers. The symbol table is
a finite injective function from variable names to locations. The actual locations of
each variable are of no particular interest in this example; thus the function is simply
modelled as a list of variables representing an ordered set. The location associated
with a variable z is a unique location psi(z), etc.

The theorems concerning SKIP are non-deterministic and thus several (in fact,
an infinite number of) different object codes may be generated. In practice, these
are each enumerated in turn, depending on the ordering of the clauses in the Prolog
database.

SKIP may be compiled to the empty sequence of instructions. The symbol table
is immaterial. In Prolog, the name ‘_’ may be used for uninstantiated parameters
which are only mentioned once in the clause.

Theorem 1
c(skip,[]/s:s,_).

Alternatively, a forward jump may also be used to implement SKIP.

Theorem 1la

c(skip, [S->jump(F)]1/S:F,_) :-
ensure (S<F).

Sequential composition and the conditional statement both require an implicitly
existentially quantified intermediate location, J, at some position between the start
and finish address. The object code from each program (M1 and M2) is concatenated
to form the entire program code for the compilation.

Theorem 2

c(P;Q,M/S:F,Psi) :-
c(P,M1/S:J,Psi),

10



c(Q,M2/J:F,Psi),
ensure(S<=J), ensure(J<=F),
concat ([M1,M2] ,M).

The conditional and looping constructs require the symbol table to be accessed
so that the location of the tested variable in memory is known.

Theorem 3

c(if B then P else Q,M/S:F,Psi) :-
succ(S,S1), succ(S1,S82),
psi(B->PsiB,Psi),
c(P,M1/82:J_1,Psi),
succ(J_1,7J),
c(Q,M2/J:F,Psi),
ensure(S2<J), ensure(J<=F),
concat ([[S->load(PsiB),S1->cond(J)],M1, [J_1->jump(F)],M2],M).

Theorem 4

c(while B do P,M/S:F,Psi) :-
succ(S,S1), succ(S1,82),
psi(B->PsiB,Psi),
c(P,M1/S2:F_1,Psi),
succ(F_1,F),
ensure(S2<=F_1),
concat ([[S->load(PsiB),S1->cond(F)],M1, [F_1->jump(S)]],M).

Non-deterministic compilation is achieved in Prolog by including more than one
clause, any of which may be applied.

Theorem 5

c(P\/_,M/S:F,Psi) :-
c(P,M/S:F,Psi).

Theorem 5a

c(_\/Q,M/S:F,Psi) :-
c(Q,M/S:F,Psi).

Compiling abort does not constrain any of the other parameters.

11



Theorem 6
c(abort,_,_).

A fresh (unused) variable must be generated when a variable is declared. This
will be discussed further in section 6.

Theorem 7

c(var V;P;end V,M/S:F,Phi) :-
fresh(V,Phi,Psi),
c(P,M/S:F,Psi).

In practice, assignment would allow an expression on the right hand side, but
here we simply assign one variable to another for simplicity in this example.

Theorem 8

c(X:=Y,[S->1load(PsiY),S1->store(PsiX)]/S:S2,Psi) :-
succ(S,S1), succ(S1,82),
psi(Y->PsiY,Psi),
psi(X->PsiX,Psi).

A number of extra predicates are needed in the clauses above (e.g., concat,
ensure, succ, etc.) and these are detailed in section 6.

Procedurally, Prolog works from left to right and performs a depth-first search for
solutions. Thus in practice it is convenient and more efficient to order clauses in a way
which reduces backtracking in normal usage — i.e., when the source program, start
address and symbol table are assumed to be inputs and the object code memory and
finish address are outputs. Given a valid source program, matching object code and
symbol table (i.e., using the program as a compiler checker), the program can always
perform a validation. However, given an incomplete set of parameters, it is very easy
to induce non-termination of the program because Prolog is attempting to search
down at infinite branch of the proof tree. In particular it would be interesting to
supply some object code and return (possibly several) programs which implement it.
Unfortunately, in practice the program presented above will not normally terminate
in this case. However with some judicious reordering of clauses and by applying the
theorems in a sensible order it is possible to produce a decompiler in Prolog. This
will be explored further in section 7.

Compilation of recursive programs

The theorem for a recursive program (Theorem 9) is slightly more complex than
those previously presented. Here the assumption is made that a subroutine call

12



to the recursive program can be made anywhere within that program. This can
be achieved in Prolog by adding an extra compiling clause allowing the subroutine
call to be made within the recursive program to the Prolog database. Ideally the
clause could be asserted and retracted at the start and end of the compilation of the
recursive program.

At first sight, an appealing way to implement such implication in Prolog is as
follows:

P=>Q :- assert(P), call(Q), retract(P).
Then the universally quantified implication in Theorem 9 can be coded as:

(c(X,[J->subr(S1)1/J3:J1,_) :-
succ(J,J1), ensure(S1<=J), ensure(Ji<=F_1))) =>
c(P,M1/S1:F_1,Psi)

First the antecedent is ‘asserted’ (added to the database of clauses), the conse-
quent is called and finally the antecedent is ‘retracted’ (removed from the database).
This works fine in practice, unless backtracking occurs (i.e., in the case of a non-
deterministic compilation in this application). Unfortunately assert and retract
are not reversible; that is to say, backtracking through a retract clause does not
reassert the clause and vice versa for an assert clause. It is possible to explicitly
code such behaviour in Prolog as follows:

add(P) :- assert(P).
add(P) :- retract(P), fail.

remove(P) :- retract(P).
remove(P) :- assert(P), fail.

P=>Q :- add(P), call(R), remove(P).

(fail is a built-in clause which can never succeed.) This allows multiple answers
to be returned for recursive programs. The complete theorem for recursion may be
encoded as follows:

Theorem 9

c(mu X:P,M/S:F,Psi) :-
succ(S,S1),
ident (X->S1),
((c(X,[J->subr(S1)]1/J3:J1,_) :- succ(J,J1),ensure(S1<=7J)))

13



=> ¢c(P,M1/S1:F_1,Psi),
succ(F_1,F),
concat ([[S->push(F)],M1, [F_1->return]],M).

Note that the constraint that J1<=F_1 cannot be usefully included in the asserted
clause because the size of the compiled recursive code is not known at this point under
the procedural reading of Prolog. Since the clause is retracted after use, this does
not pose a problem. The scheme means that the name X must not clash with existing
programs and thus that mutually recursive programs should have unique names, but
this is not a problem in practice. In fact if two recursive programs with the same
name are used then both possibilities are returned.

The clause ident ensures that the name of the recursive program is a string or
uniquely names the program using its start address. The former avoids conflicts with
exiting program constructs; the latter is particularly useful for decompilation (see
section 7).

ident(X->_) :- atom(X).
ident ($§N->N) .

Other logic programming systems based on intuitionistic logic (McCarty, 1988)
allow the use of an implication on the right-hand side of a clause (e.g., (Miller, 1989)).
Such systems would allow the direct coding of this theorem.

6 Supporting clauses

The symbol table ¥ is stored as a list which represents the set of variables since ¥
is a finite injection and the actual variable locations are of no particular interest in
this example. The psi clause allows variables in the table to be accessed:

psi(V->psi(V),Psi) :-
variable(V), table(Psi), member(V,Psi).

An encoding for & = {v} 9 ¥ in theorem 7 must be selected. Since v € dom ¥
and v ¢ dom @ this is equivalent to ¥ = & W {v — V¥(v)}. Negation in Prolog
(\+), needed to implement ¢, is not sound in general (Lloyd, 1987); however if all
the parameters to the clause are known at the time, it can be applied safely using
negation by failure. The symbol table and the number of allowed variables is finite
in this case so it is possible to ensure this; variable(V), table(Phi) below make
sure that V and Phi are always fully instantiated when \+ member(V,Phi) is called
thus avoiding any unsoundness problems.

fresh(V,Phi,Psi) :-

14



variable(V),

table(Phi), \+ member(V,Phi),
setof (X,member (X, [V|Phi]) ,Psi),
table(Psi), member(V,Psi).

(setof (z,y,2) implements set comprehension {z | y @ z} for finite sets.)

For example purposes, a small finite number of variable names are allowed so that
all the possible combinations of variable declaration may be displayed, particularly
during decompilation.

variable(a).
variable(b).
variable(c).

In practical use, the variable clause would simply check for a valid variable name
(using the built-in atom clause, for example).
A valid symbol table consists of a subset of these variables.

table(Psi) :-
setof (V,variable(V),Vs), subset(Vs,Psi).

6.1 Memory addresses — natural numbers

Numerical memory addresses (natural numbers) may be handled in such a way that
they need not necessarily be deterministically instantiated when a compiling clause
is called. In the definition of nat below, if the parameter is already instantiated as
a natural number, the clause succeeds immediately. If the parameter is not instanti-
ated, then successive natural numbers are returned at each invocation. This allows
non-deterministic compilation to take place.

nat (0).
nat(X) :- integer(X), 0<X.
nat(X) :- var(X), nat(X_1), X is X_1+1.

(integer is a standard Prolog clause which checks for an instantiated integer value
and var checks for an uninstantiated variable.)
An equivalent simpler but less efficient encoding is:

nat (0).
nat(X) :- nat(X_1), X is X_1+1.
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Here instantiated values are checked much less efficiently, especially for large num-
bers.

A successor function succ for natural numbers is also needed in the compiling
clauses above. The following encoding allows the clause to be used for fully instanti-
ated values, partially instantiated values and totally uninstantiated values, in which
case successive successor pairs are returned.

succ(X,X1) :- integer(X), integer(X1), X+1=:=X1.
succ(X,X1) :- integer(X), var(X1), X1 is X+1.

succ(X,X1) :- var(X), integer(X1), X is X1-1.
succ(X,X1) :- var(X), var(X1), nat(X), X1 is X+1.
(=:= performs arithmetic comparison on two fully instantiated expressions; is unifies

a variable to the value of a fully instantiated arithmetic expression.)

A comparison relation may be applied to any two variables by ensuring that the
variables are instantiated to numerical values before applying the standard Prolog
arithmetic comparison test.

ensure(X<=Y) :- nat(X), nat(Y), X=<Y.
ensure(X<Y) :- nat(X), nat(Y), X<Y.

Many of the comparisons in the compiling clauses are in fact redundant in practice
but are included anyway to match the compiling specification more closely.

Different encodings for nat, succ and <= can produce varying results in practice
because the ordering of possible results returned could be affected.

6.2 Object code — sequences

Concatenation of object code may be achieved in two ways. If the target code is
unknown as in the case of standard compilation then the constituent parts of code
are simply concatenated to form a flattened version of the entire code. If the target
code is already known then this code is split into all possible subsequences instead in
order to match the code given in the compiling clauses. In each case, the structure
of the constituent parts is known.

concat(S,T) :- nonvar(S), var(T), flatten(S,T).
concat(S,T) :- nonvar(S), nonvar(T), split(T,S).

(nonvar checks for a (possibly partially) instantiated variable.)

flatten([]1,[]).
flatten([X|S],T) :- flatten(S,U), append(X,U,T).
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split([]1,[1).
split(T,[XIS]) :- append(X,U,T), split(U,S).

6.3 Sets

Sets may be modelled by lists. Set membership can be checked:

member (X, [X|_1).
member(X,[_|L]) :- member(X,L).

All possible subsets of a (finite) ordered set may be returned. The following
implementation ensures that elements are not repeated in the list:

subset ([1,[]).
subset([_IL],R) :- subset(L,R).
subset ([XIL], [XIR]) :- subset(L,R).

Further operations on sets can be encoded in Prolog, but these are all that are
necessary here.

7 Decompilation

The Dictionary of Computing (Illingworth, 1990) gives the following (abridged) def-
initions for a compiler and decompiler:

compiler A program that translates high-level language into absolute
code ...

decompiler A program that attempts to ... translate back from ma-
chine code to something resembling the source language. The task is
difficult and not often attempted.

This section attempts to show instead that decompilation is almost as easy as forward
compilation; the amount of Prolog code required is not significantly more complex.

7.1 Prolog clauses

Fach Prolog clause, or set of clauses, specifies a relation between its parameters. In
the case of the ‘c’ compiling clauses, the source program is normally an input and the
object code is normally an output. However because of the backtracking properties
of Prolog, there is no reason in theory why this operation should not be performed
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in reverse. In practice, it is diflicult to ensure termination of the Prolog program
for all possible values of parameters supplied to a Prolog clause because the depth
first strategy of the Prolog interpreter may easily attempt to search down an infinite
tree. Some reordering of clauses is necessary to avoid this problem.

Some built-in Prolog clauses (e.g., the ‘is’ clause) are not invertible and expect
instantiated values for some of the parameters. Here the clauses nat and succ have
been defined to avoid such clauses and perform invertible arithmetic allowing some
degree of flexibility in which parameters are instantiated.

Another problem in the case of the compiler is that the number of programs
which could compile into a particular piece of object code is very large; in fact it is
infinite. For example:

e SKIP can be combined using sequential composition at any point in a program
without changing its semantics;

e Any piece of object code could be decompiled to the program ABORT; any
validly compiled program construct could be replaced by ABORT during de-
compilation since ABORT is the bottom element of the refinement ordering of
programs;

e Unused variables can always be declared with no change in object code;

¢ The non-deterministic compilation of PN allows any program to be supplied
as an alternative.

Thus it is sensible to apply the theorems selectively in a decompiler so that not
all possible programs are returned (i.e., only an ‘interesting’ subset is selected) and
the user is not overwhelmed with uninteresting possibilities.

For example, the theorem compiling skip to the empty sequence should be ap-
plied very selectively; certainly not in sequential composition to avoid infinite se-
quences of skip, but necessarily in the if and while constructs to allow for programs
such as if a then b:=c else skip.

Theorem 1
cRi(skip,[1/s:8,.).

On the other hand, it is necessary to allow a forward jump to decompile to skip
even when considering sequential composition in case the code includes such jumps.
Theorem 1la

cR2(skip, [S->jump(F)]/S:F,_) :-

ensure(S<F).
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For decompilation, it is sensible to split the memory first and then attempt
pattern matching to avoid backtracking.

Theorem 3

cR2(if B then P else Q,M/S:F,Psi) :-
concat ([[S->load(PsiB),S1->cond(J)],M1, [J_1->jump(F)],M2] ,M),
succ(S,S1), succ(S1,S82), succ(J_1,7J),
psi(B->PsiB,Psi),
cR12(P,M1/S2:J_1,Psi),
cR12(Q,M2/J:F,Psi),
ensure(S2<J), ensure(J<=F).

Theorem 4

cR2(while B do P,M/S:F,Psi) :-
concat ([[S->load(PsiB),S1->cond(F)],M1, [F_1->jump(S)]1],M),
succ(S,S1), succ(S1,S82), succ(F_1,F),
psi(B->PsiB,Psi),
cR12(P,M1/S2:F_1,Psi),
ensure(S2<=F_1).

Some clauses are identical (apart from the name) to the clauses used for forward
compilation.

Theorem 8

cR2(X:=Y,[S->load(PsiY),S1->store(PsiX)]/S:S2,Psi) :-
succ(S,S1), succ(S1,S82),
psi(Y->PsiY,Psi),
psi(X->PsiX,Psi).

Despite the problems of asserting an extra clause for recursive program compila-
tion, this works equally well for decompilation; indeed, the extra condition J1<=F_1
which could not be included in the forward compiler because the value of F_1 was
unknown, can be included here since F_1 is known beforehand.

Theorem 9

cR2(mu X:P,M/S:F,Psi) :-
concat ([[S->push(F)],M1, [F_1->return]],M),
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succ(S,S1), succ(F_1,F),
ident (X->S1),
((cR2(X,[J->subr(sS1)]1/J:J1,_) :-
succ(J,J1) ,ensure(S1<=J) ,ensure(J<F_1)))
=> cR12(P,M1/S1:F_1,Psi).

During decompilation of sequential composition, it is desirable to avoid consid-
ering empty sequences of code since these can only decompile to skip and can do
so infinitely often. In addition, this allows the pattern matching abilities of Prolog
to ascertain the intermediate (implicitly existentially quantified) value of J directly
from the code itself.

Theorem 2

cR2(P;Q,M/S:F,Psi) :-
concat([[S->I1|M1], [J->I2|M2]],M),
cR2(P, [S->I1|M1]/S:J,Psi),
cR2(Q, [J->I2|M2]/J:F,Psi),
ensure(S<=J), ensure(J<=F).

By applying the theorem for sequential composition last, all other object code pat-
terns may be checked first, thus improving the efficiency of the search.

Adding variable declarations should only be done at the outer level and is thus
specified as a separate clause.

Theorem 7

cR3(var V;P;end V,M/S:F,Phi) :-
fresh(V,Phi,Psi),
cR123(P,M/S:F,Psi).

In the last resort, abort may be returned for any (including invalid) code at the
topmost level.

Theorem 6
cR4(abort,_,_).

The non-deterministic compilation of P M () is not useful in decompilation since
it can add any arbitrary program; thus it is not included.

7.2 Combinations of theorems

The following combinations of theorems are used in the decompilation clauses above:
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Theorems 1 & 1a, 3, 4, 8, 9, 2

cR12(P,M/S:F,Psi) :- cR1(P,M/S:F,Psi).
cR12(P,M/S:F,Psi) :- cR2(P,M/S:F,Psi).

Variable declarations are only added at the outermost level:

All previous theorems & theorem 7

cR123(P,M/S:F,Psi) :- cR12(P,M/S:F,Psi).
cR123(P,M/S:F,Psi) :- cR3(P,M/S:F,Psi).

At the topmost level, all the theorems, including that for the program ABORT,
may be applied:

All previous theorems & theorem 6

cR(P,M/S:F,Psi) :- cR123(P,M/S:F,Psi).
cR(P,M/S:F,Psi) :- cR4(P,M/S:F,Psi).

7.3 An alternative approach

An alternative and interesting coding for the theorems is to record the contents of
memory as extra assertions. Thus the result of running the compiler is to add the
object code to the database of Prolog clauses using the Prolog assert clause. For
decompilation, the object code must first be added to the Prolog database of clauses,
and then decompiler is run to generates the equivalent high-level program(s)

For compilation, more care must be taken to ensure that the memory is asserted
at a time when the relevant parameters are instantiated. This is only a problem for
the if and while clauses where jump locations are not known until the intervening
program has been compiled. Judicious reordering of the clauses (allowed because of
the commutativity of conjunction) enables these to be available at the correct time,
under the procedural reading of the Prolog program.

For further details of such an encoding, see (Hoare et al., 1990b).

8 Example output

The following are sample runs of some of the previously presented code using Quintus
Prolog (Quintus, 1990).

Given arbitrary uninstantiated parameters, the compiling clause tries to return
all possible programs. In practice, since Prolog performs a depth-first search of
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its database of clauses and skip can be compiled in infinitely different ways, only
programs for the skip theorems are returned.

| ?- c(P,M,Psi).

P = skip,

M = [1/.590:.590,

Psi = _470 ;

P = skip,

M = [0->jump(1)]1/0:1,
Psi = _470 ;

P = skip,

M = [0->jump(2)]1/0:2,
Psi = _470

The symbol table ¥ is arbitrary. Prolog indicates this with Psi = _n where n is
some internal variable number.
Consider a more specified program:

| ?- c(if a then b:=c else c:=b,M/0:F,[a,b,c]).

M = [0->load(psi(a)),1->cond(5),
2->1load(psi(c)),3->store(psi(b)),4->jump(7),
5->1load(psi(b)),6->store(psi(c))],

F=7;

no

Here ‘a’, ‘b’ and ‘c’ are supplied as being in the symbol table and there is only
one possible compilation allowed (ignoring the allocation of memory addresses for
variables in the symbol table).

Code containing a skip can include gaps. For example, the third compilation in
the list of possibilities below has no code at location 3:

| ?- c(while b do skip,M/0:F,_).

M = [0->load(psi(b)),1->cond(3),2->jump(0)],
F=3;
M = [0->load(psi(b)),1->cond(4),2->jump(3),3->jump(0)],
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F =4,

M
F

[0->1oad(psi(b)),1->cond(5),2->jump(4) ,4->jump(0)],
5

Give a non-deterministic choice of two programs, either may be compiled:

| ?- c((a:=b)\/(b:=a),M/0:F,[a,b]).

M = [0->1load(psi(b)),1->store(psi(a))],
F=2;

M = [0->1load(psi(a)),1->store(psi(b))],
F=2;

no

Variables can be (and normally are) explicitly declared in the program. For
example:

| ?- c(var a;(var b; a:=b; end b);end a,M/0:F,[]).

M = [0->1load(psi(b)),1->store(psi(a))],
F=2;
no

It is possible to vary the parameters that are supplied and those which are cal-
culated. For example, asking for a program to fit into a given size of memory results
in Prolog searching for all such programs

| ?- c(P,M/0:10,_).

P = skip,
M = [0->jump(10)] ;

P = skip;skip,
M = [0->jump(10)] ;

P = skip;skip;skip,
M = [0->jump(10)]
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On compiling a recursive program, a new compiling clause is added to the
database:

| ?- c(mu x:x,M/0:F,_).

M = [0->push(3),1->subr(1),2->return],
F=3;
no

| ?- c(x,M/S:F,_).

M = [1->subr(1)],
S =1,

F=2;

M = [2->subr(1)],
S =2,

F=3;

M = [3->subr(1)],
S = 3,

F =4

Decompiling this code gives:

| ?- cR(P,[0->push(3),1->subr(1),2->return]/_:_,_).

P = mu$1: $1 ;
P = var a;mu$l: $1;end a ;
P = var a;(var b;mu$i: $1;end b);end a

As can be seen above, arbitrary redundant variable declarations may be added during
decompilation.

Decompilation will in general list a number of possibilities. For example, se-
quential composition can be bracketed in any order and ABORT is always a valid
program:

| ?- cR(P,[0->load(psi(b)),1->store(psi(a)),
2->load(psi(c)),3->store(psi(b)),
4->load(psi(a)),5->store(psi(c))]/_:_,[a,b,c]).
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P = a:=b;b:=c;c:=a ;

P = (a:=b;b:=c);c:=a ;
P = abort ;
no

9 Constraint Logic Programming

Some Prolog clauses are not reversible. For example, the is construct allows arith-
metic expressions to be evaluated in a single direction. Here the clauses nat and
succ have been defined to avoid this problem. However there is no way in Prolog to
define a number (for example) which is constrained in some way (e.g., z > 1). The
number must be enumerated for each instance which is valid (e.g., z = 1, z = 2,
¢z = 3, etc.). Such enumerations can often be infinite (see for example, theorem la
for the compilation of SKIP using a forward jump instruction. This can easily result
in non-termination of the Prolog program if care is not taken.

This deficiency could be remedied by a newly emerging field, namely ‘Con-
straint Logic Programming’ which is an extension of the standard Logic Programming
paradigm. Unification is replaced by a more general mechanism of constraint sat-
isfaction in which a set of (in)equations (constraints which may be added to each
clause) must be solved. A given domain or set of domains (e.g., CLP(R) for the real
numbers) is covered by a particular CLP system. Such systems are now reasonably
efficient and becoming more generally available (e.g., (Colmerauer, 1990)). A use-
ful overview and a good up-to-date list of references to this field may be found in

(Cohen, 1990).

9.1 Meta-level interpretation

Briefly, a core logic programming interpreter looks like the following (in Prolog):

solve([]).
solve([Goal|Restgoall]) :-

solve(Goal),
solve(Restgoal).
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solve(Goal) :-
clause(Goal,Body),
solve(Body) .

In this example, clauses of the form ‘Goal :- Body.’ are assumed to be stored as
clause(Goal,Body).

In a constraint logic programming language, clauses have extra constraints asso-
ciated with them:

Goal :- Body {Constraints}.

A constraint logic programming interpreter is augmented to handle these con-
straints as follows:

solve([],C,C).

solve([Goal|Restgoal] ,PrevC,NewC) :-
solve(Goal,PrevC,TempC),
solve(Restgoal,TempC,NewC) .

solve(Goal,PrevC,NewC) :-
clause(Goal,Body,Constraints),
merge(PrevC,Constraints,TempC),
solve(Body,TempC,NewC) .

The sets of constraints must be maintained and updated as each clause is encoun-
tered. The merge clause conjoins the previous constraints with the constraints of
the current clause. This is where most of the extra programming effort is required
in implementing a CLP system in practice.

9.2 A CLP compiler/decompiler
Part of a simple CLP compiler/decompiler has been implemented using Prolog III:

cc(skip, <>, S, S, T) -> ;

cc(skip, <S,jump(F)>, S, F, T) ->
{S<F};

cc(if(B,P,Q), <S,lo0ad(T,B), S+1,cond(J)>.M1.<J-1,jump(F)>.M2,

S, F, T) ->
cc(P, M1, S+2, J-1, T)
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cc(Q, M2, J, F, T)
{S+2<J, J<=F} ;

cc(while(B,P), <S,l0ad(T,B), S+1,cond(J)>.M.<F-1,jump(S)>,

S, F, T) ->
cc(P, M, S+2, F-1, T)
{S+2<F};

cc(abort, M, S, F, T) -> ;
cc(assign(X,Y), <S,l0ad(T,Y), S+1,store(T,X)>, S, S+2, T) -> ;

cc(mu(X, P), <S,push(F)>.M.<F-1,return>, S, F, T) ->
assert(cc(X, <J,subr(S+1)>, J, J+1, T), [1)
cc(P, M, S+1, F-1, T)
{S«<J, J<F-1};

cc(«>, M, S, F, T) ->
cc(skip, M, S, F, T);

cc(«P>.R, M1.M2, S, F, T) ->
cc(P, M1, S, J, T)
cc(R, M2, J, F, T)
{S«=J, J<=F};

These clauses do indeed execute in both directions without the necessity to have
different clauses for the compiler and the decompiler. However the clauses should
still be applied selectively in the reverse direction to ensure program termination.

9.3 Sample runs

The following examples demonstrate the output obtained by running the program
shown above:

> cc(skip, M, S, F, T);

{M = <>, F = s}

{M = <S_2,jump(S_2 + S$5_2)>, S = S_2, F = S_2 + S$5_2,
S$5_2 > 0 }

> cc(assign(x,y), M, S, F, T);
{M = <S_1,10ad(T,y),S_1 + 1,store(T,x)>, S = S_1, F =S_1 + 2}
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> cc(P, <S_1,1l0ad(T,y), S_1+1,store(T,x)>, S, F, T);
{P = abort,

S_1!'num }
{P = assign(x,y), S =5S_1, F =S_1+ 2}

In particular, programs that output an infinite number of answers by enumerating all
the possible answers in turn (such as when SKIP is compiled non-deterministically),
can output a finite answer, simply giving the constraints involved instead (see above).

10 Conclusions

The complete code for the example compiler and decompiler is presented here. It can
be seen that the entire program for each is not a great deal longer than the original
specification, even including the support routines; and certainly the reverse compiler
is not significantly more complicated than the more normal forward compiler.

The subset of Prolog used is relatively pure (e.g., there are no cuts and negation
is used very sparingly (just once!) and only when it is ‘safe’ to do so to maintain
the soundness properties). Thus the declarative semantics of Prolog (Lloyd, 1987)
may be assumed to hold and it would be possible to perform a formal proof of the
correctness of the Prolog compiler and decompiler which are presented here. For
example, the approach of program synthesis using the proofs as programs technique
presented in (Bundy et al., 1990) could be (somewhat laboriously) applied. Research
is very active in the area of logic program synthesis and transformation (Clement et
al., 1991). Less pure features used in the code presented here include var, nonvar,
integer, assert and retract, but these are used in a very restricted manner which
is intended to maintain the logical semantics as far as possible.

This paper uses a very simple programming language and instruction set as an
example. However some of the ideas presented have been applied to a subset of
a real programming language and microprocessor, namely occam and the trans-
puter (Bowen et al., 1989, Hoare et al., 1990b). Whilst there is no guarantee than
the prototyping method will necessarily scale up to a full real language, we believe
that the approach looks promising, particularly for safety-critical applications where
optimization is avoided for safety reasons.

In practice the output from an optimizing compiler will be considerably more
complicated than the simple example presented here. However, extra theorems spec-
ifying different code for constructs may easily be included without affecting existing
theorems (He et al., 1992), and the pattern matching abilities of Prolog will still
be able to unify the correct construct (or constructs). For example, the following
theorem could be added:
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Theorem 3a {conditional}
If s+2<j<fand m[s] = load(¥(b)) and m[s+ 1] = cond(f) and Cpm[s+2: f)¥
then C( IF bTHEN p)m[s : f)¥

This would allow optimized conditional clauses with no ELSE part to be compiled
and decompiled.

The efficiency of the compiler and the decompiler presented here is not great
and it is envisaged that practical applications of this technique would require some
optimization of the Prolog code using program transformation and data refinement
techniques. However in both cases the first answer returned will normally be of
greatest interest (and the program can be structured with this in mind), so it is
not necessary to search through all possibilities (e.g., all the possible combinations
of sequential composition). Additionally the theorems can be ordered and applied
selectively for efliciency. For example, individual subroutines could be recognized and
isolated early on in the decompilation process, so that smaller blocks of code may
then be decompiled separately. Assuming that subroutines are all approximately of
the same order of magnitude in size, the computational complexity is then linear
in the number of subroutines. Indeed, if several processors are available, separate
subroutines could be decompiled in parallel, thus reducing the execution time still
further — essentially to a (large) constant time given enough processors.

This paper ignores the problems of parsing by using the abstract syntax directly.
Fortunately, this can be made fairly readable using Prolog since infix, prefix and
postfix operators with specified associativity and precedence are possible. However,
in practice real compiler would need a parser (and a static semantics checker). A
decompiler would require a concrete syntax to be generated from the abstract syntax
produced be the decompiler presented here. Luckily this is far easier that the reverse
procedure since only correct abstract syntax is generated and thus error checking is
not necessary. All these extra phases are possible in Prolog, although perhaps not
as efficiently as other approaches (Paakki, 1991).

10.1 Related work

Of course the above techniques, whilst useful for rapid prototyping, may not be
efficient enough for practical and useful implementation in general. Other program-
ming paradigms could go some way to alleviating this. For example, the compiler
and decompiler presented here have also been implemented using a functional pro-
gramming language (Breuer et al., 1992a, Breuer et al., 1992c). Because of the
irreversible nature of functions when there are implemented on a machine, the com-
piler and decompiler must be defined separately. A different set of concerns arise,
particularly with regard to the enumeration of sets of possible high-level programs
or object codes to ensure that the required programs are enumerated fairly. This
work also demonstrates the relationship with attribute grammars (Deransart et al.,
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1987).

However a practical approach which may gain widespread use must use a more
traditional, efficient and widely used language such as ANs1 C (Kernighan et al.,
1988). Compiler-compiler technology is well established for use in generating com-
pilers. For example, yacc (Johnson et al., 1978) is the traditional tool used under
UNIX. Implementations of yacc have been in existence for many years and it is some-
what restrictive, having been originally designed at a time when memory capacity of
computers was much smaller and more critical. Its one-token look-ahead approach,
whilst efficient, leads to inelegant parser descriptions which do not match the BNF
descriptions provided for most languages directly, and cannot handle some languages
that require infinite look-ahead.

More modern tools, such as precc (Breuer, 1992b, Breuer et al., 1992b, Breuer et
al., 1993), allow languages like occam (INMOS Limited, 1988), which are difficult
for yacc because of the use of indentation to indicate structure, to be handled with
ease (Bowen et al., 1992a). The ideas behind precc have been extended using the
concept of a decompiler-compiler to allow decompilers to be generated more quickly
and efficiently using C (Breuer et al., 1992d).

The decompiler-compiler has been applied at BT Research Laboratories with
investigations based around the GNU ANSI C compiler (Breuer, 1992a). Such pro-
duction compilers rarely have a formal specification associated with them, so the
first requirement is to formulate such a description. Obtaining a full specification is
a time-consuming exercise. However, provided that optimization is not enabled, the
control structure of the object code can be recovered. Rediscovering data structures
is significantly more difficult, and even impossible in practice because too much infor-
mation has been lost, unless the intervention and insight of an engineer is provided.

Overviews of other related work on the ProCoS, safemos and REDO projects
may be found in (Bjgrner, 1992, Bjorner et al., 1992, Bowen, 1993, van Zuylen et
al., 1993).

10.2 Possible future directions

The decompiler could be useful in the software maintenance process if, for example,
the original code had been lost. However, given the limitations concerning optimized
code and complicated data structures, the techniques described here are most likely
to prove useful in situations where these are normally avoided, such as in the de-
compilation of code for safety-critical systems for verification purposes — e.g., as in
(Spector et al., 1984, Pavey et al., 1992).

Currently most object program debuggers provide disassembled representations
of the object code to the engineer. Decompilation techniques could be used to display
a higher-level reconstruction of the code which could aid the understanding of the
functioning of the code. Other information could also be extracted which could give
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an indication of the quality of the code.

It may be possible to specify decompilation of constructs in such a way that
the resulting high-level program is more structured that the original program. For
instance, the original forward compiler could include goto statements, but the de-
compiler could only include more structured statements, or at least attempt to apply
these in preference to less desirable constructs by ordering the Prolog clauses sensi-
bly. Other possible refinements include removal of redundant variable declarations,
unused sections of code, etc.

A Constraint Logic Programming system (Cohen, 1990, Colmerauer, 1990) could
be used to improve the compiler and decompiler presented here, and maybe even to
combine them into a single program. This would be a useful and interesting area
of investigation. However it is likely that this will remain a research topic until
optimizing compilers are available for such systems which can match the efficiency
of current Prolog technology (Paakki, 1991, Quintus, 1990).

The development of techniques of inductive logic programming (Muggleton et al.,
1990), which aim at the derivation of Prolog programs from examples and back-
ground knowledge, could provide the possibility of automatically synthesising the
compiling specification program from examples of triples (p, ¥, m) of an input source
program p, symbol table ¥, and the compiled object code m. This then obviates
the need for (perhaps unfounded) assumptions on the part of the decompiler writer
about the semantics of the source code.
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