Programming, Administration, Performance Tips

ractical
mod_per]

¢‘. i
,%(’»:%g% g
!

"

O, REI LLY® Stas Bekman & Eric Cholet

Practical mod_perl

Practical mod_ perl

Stas Bekman and Eric Cholet

O'REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

CHAPTER 6
Coding with mod_ perl in Mind

This is the most important chapter of this book. In this chapter, we cover all the
nuances the programmer should know when porting an existing CGI script to work
under mod_perl, or when writing one from scratch.

This chapter’s main goal is to teach the reader how to think in mod_perl. It involves
showing most of the mod_perl peculiarities and possible traps the programmer
might fall into. It also shows you some of the things that are impossible with vanilla
CGI but easily done with mod_perl.

Before You Start to Code

There are three important things you need to know before you start your journey in a
mod_perl world: how to access mod_perl and related documentation, and how to
develop your Perl code when the strict and warnings modes are enabled.

Accessing Documentation

mod_perl doesn’t tolerate sloppy programming. Although we’re confident that you're
a talented, meticulously careful programmer whose programs run perfectly every
time, you still might want to tighten up some of your Perl programming practices.

In this chapter, we include discussions that rely on prior knowledge of some areas of
Perl, and we provide short refreshers where necessary. We assume that you can
already program in Perl and that you are comfortable with finding Perl-related infor-
mation in books and Perl documentation. There are many Perl books that you may
find helpful. We list some of these in the reference sections at the end of each chapter.

If you prefer the documentation that comes with Perl, you can use either its online
version (start at http://www.perldoc.com/ or http://theoryx5.uwinnipeg.ca/CPAN/perl/)
or the perldoc utility, which provides access to the documentation installed on your
system.

217

To find out what Perl manpages are available, execute:
panic% perldoc perl

For example, to find what functions Perl has and to learn about their usage, execute:
panic% perldoc perlfunc

To learn the syntax and to find examples of a specific function, use the -f flag and the
name of the function. For example, to learn more about open(), execute:

panic% perldoc -f open
The perldoc supplied with Perl versions prior to 5.6.0 presents the information in

POD (Plain Old Documentation) format. From 5.6.0 onwards, the documentation is
shown in manpage format.

You may find the perlfag manpages very useful, too. To find all the FAQs (Fre-
quently Asked Questions) about a function, use the -q flag. For example, to search
through the FAQs for the open() function, execute:

panic% perldoc -q open
This will show you all the relevant question and answer sections.
Finally, to learn about perldoc itself, refer to the perldoc manpage:
panic% perldoc perldoc

The documentation available through perldoc provides good information and exam-
ples, and should be able to answer most Perl questions that arise.

Chapter 23 provides more information about mod_perl and related documentation.

The strict Pragma

We’re sure you already do this, but it’s absolutely essential to start all your scripts
and modules with:

use strict;

It’s especially important to have the strict pragma enabled under mod_perl. While it’s
not required by the language, its use cannot be too strongly recommended. It will save
you a great deal of time. And, of course, clean scripts will still run under mod_cgi!

In the rare cases where it is necessary, you can turn off the strict pragma, or a part
of it, inside a block. For example, if you want to use symbolic references (see the
perlref manpage) inside a particular block, you can use no strict 'refs';, as follows:

use strict;

{
no strict 'refs’;
my $var_ref = 'foo';
$$var_ref = 1;

218 | Chapter6: Coding with mod_perl in Mind

Starting the block with no strict 'refs'; allows you to use symbolic references in
the rest of the block. Outside this block, the use of symbolic references will trigger a
runtime error.

Enabling Warnings

It’s also important to develop your code with Perl reporting every possible relevant
warning. Under mod_perl, you can turn this mode on globally, just like you would
by using the -w command-line switch to Perl. Add this directive to httpd.conf:

PerlWarn On
In Perl 5.6.0 and later, you can also enable warnings only for the scope of a file, by
adding:

use warnings;

at the top of your code. You can turn them off in the same way as strict for certain
blocks. See the warnings manpage for more information.

We will talk extensively about warnings in many sections of the book. Perl code writ-
ten for mod_perl should run without generating any warnings with both the strict
and warnings pragmas in effect (that is, with use strict and PerlWarn On or use
warnings).

Warnings are almost always caused by errors in your code, but on some occasions
you may get warnings for totally legitimate code. That’s part of why they’re warn-
ings and not errors. In the unlikely event that your code really does reveal a spurious
warning, it is possible to switch off the warning.

Exposing Apache::Registry Secrets

Let’s start with some simple code and see what can go wrong with it. This simple
CGI script initializes a variable $counter to 0 and prints its value to the browser while
incrementing it:

#!/usx/bin/perl -w
use strict;

print "Content-type: text/plain\n\n";
my $counter = 0;
for (1..5) {

increment_counter();
}

sub increment_counter {
$counter++;
print "Counter is equal to $counter !\n";

Exposing Apache::Registry Secrets | 219

When issuing a request to /perl/counter.pl or a similar script, we would expect to see
the following output:

Counter is equal to 1 !

Counter is equal to 2 !

Counter is equal to 3 !

Counter is equal to 4 !

Counter is equal to 5 !
And in fact that’s what we see when we execute this script for the first time. But let’s
reload it a few times.... After a few reloads, the counter suddenly stops counting from
1. As we continue to reload, we see that it keeps on growing, but not steadily, start-
ing almost randomly at 10, 10, 10, 15, 20..., which makes no sense at all!

Counter is equal to 6 !

Counter is equal to 7 !

Counter is equal to 8 !

!

Counter is equal to 9
Counter is equal to 10 !

We saw two anomalies in this very simple script:

* Unexpected increment of our counter over 5

* Inconsistent growth over reloads

The reason for this strange behavior is that although $counter is incremented with
each request, it is never reset to 0, even though we have this line:

my $counter = 0;

Doesn’t this work under mod_perl?

The First Mystery: Why Does the Script Go Beyond 5?

If we look at the error_log file (we did enable warnings), we’ll see something like this:

Variable "$counter” will not stay shared

at /home/httpd/perl/counter.pl line 13.
This warning is generated when a script contains a named (as opposed to an anony-
mous) nested subroutine that refers to a lexically scoped (with my()) variable defined
outside this nested subroutine.

Do you see a nested named subroutine in our script? We don’t! What's going on?
Maybe it’s a bug in Perl? But wait, maybe the Perl interpreter sees the script in a dif-
ferent way! Maybe the code goes through some changes before it actually gets exe-
cuted? The easiest way to check what’s actually happening is to run the script with a
debugger.

Since we must debug the script when it’s being executed by the web server, a normal
debugger won’t help, because the debugger has to be invoked from within the web
server. Fortunately, we can use Doug MacEachern’s Apache: :DB module to debug our

220 | Chapter6: Codingwith mod_perl in Mind

script. While Apache: :DB allows us to debug the code interactively (as we will show in
Chapter 21), we will use it noninteractively in this example.

To enable the debugger, modify the httpd.conf file in the following way:

PerlSetEnv PERLDB_OPTS "NonStop=1 LineInfo=/tmp/db.out AutoTrace=1 frame=2"
PerIModule Apache::DB
<Location /perl>
PerlFixupHandler Apache::DB
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGI
PerlSendHeader On
</Location>

We have added a debugger configuration setting using the PERLDB_OPTS environment

variable, which has the same effect as calling the debugger from the command line.
We have also loaded and enabled Apache: :DB as a Per1FixupHandler.

In addition, we’ll load the Carp module, using <Perl> sections (this could also be
done in the startup.pl file):

<Perl>

use Carp;

</Perl>
After applying the changes, we restart the server and issue a request to /perl/counter.
pl, as before. On the surface, nothing has changed; we still see the same output as
before. But two things have happened in the background:

* The file /tmp/db.out was written, with a complete trace of the code that was
executed.

* Since we have loaded the Carp module, the error_log file now contains the real
code that was actually executed. This is produced as a side effect of reporting the
“Variable “$counter” will not stay shared at...” warning that we saw earlier.

Here is the code that was actually executed:

package Apache::ROOT::perl::counter 2epl;
use Apache qu(exit);
sub handler {
BEGIN {
$MW = 1;
};
$™W = 1;

use strict;
print "Content-type: text/plain\n\n";

my $counter = 0;

Exposing Apache::Registry Secrets | 221

for (1..5) {
increment_counter();
}

sub increment counter {
$counter++;
print "Counter is equal to $counter !\n";

}

Note that the code in error_log wasn’t indented—we’ve indented it to make it obvi-
ous that the code was wrapped inside the handler() subroutine.

From looking at this code, we learn that every Apache: :Registry script is cached under
a package whose name is formed from the Apache: :R00T: : prefix and the script’s URI
(/perl/counter.pl) by replacing all occurrences of / with :: and . with 2e. That’s how
mod_perl knows which script should be fetched from the cache on each request—each
script is transformed into a package with a unique name and with a single subroutine
named handler (), which includes all the code that was originally in the script.

Essentially, what’s happened is that because increment_counter() is a subroutine that
refers to a lexical variable defined outside of its scope, it has become a closure. Closures
don’t normally trigger warnings, but in this case we have a nested subroutine. That
means that the first time the enclosing subroutine handler() is called, both subrou-
tines are referring to the same variable, but after that, increment_counter() will keep its
own copy of $counter (which is why $counter is not shared) and increment its own
copy. Because of this, the value of $counter keeps increasing and is never reset to 0.

If we were to use the diagnostics pragma in the script, which by default turns terse
warnings into verbose warnings, we would see a reference to an inner (nested) sub-
routine in the text of the warning. By observing the code that gets executed, it is clear
that increment counter() is a named nested subroutine since it gets defined inside
the handler() subroutine.

Any subroutine defined in the body of the script executed under Apache: :Registry
becomes a nested subroutine. If the code is placed into a library or a module that the
script require()s or use()s, this effect doesn’t occur.

For example, if we move the code from the script into the subroutine run(), place
the subroutines in the mylib.pl file, save it in the same directory as the script itself,
and require() it, there will be no problem at all.” Examples 6-1 and 6-2 show how
we spread the code across the two files.

Example 6-1. mylib.pl

my $counter;
sub run {
$counter = 0;

* Don’t forget the 1; at the end of the library, or the require() call might fail.

222 | Chapter6: Coding with mod_perl in Mind

Example 6-1. mylib.pl (continued)

for (1..5) {
increment_counter();

}
}
sub increment_counter {
$counter++;
print "Counter is equal to $counter !\n";
}
1;

Example 6-2. counter.pl

use strict;

require "./mylib.pl";

print "Content-type: text/plain\n\n";
run();

This solution is the easiest and fastest way to solve the nested subroutine problem.
All you have to do is to move the code into a separate file, by first wrapping the ini-
tial code into some function that you later call from the script, and keeping the lexi-
cally scoped variables that could cause the problem out of this function.

As a general rule, it’s best to put all the code in external libraries (unless the script is
very short) and have only a few lines of code in the main script. Usually the main script
simply calls the main function in the library, which is often called init() or run().
This way, you don’t have to worry about the effects of named nested subroutines.

As we will show later in this chapter, however, this quick solution might be problem-
atic on a different front. If you have many scripts, you might try to move more than
one script’s code into a file with a similar filename, like mylib.pl. A much cleaner
solution would be to spend a little bit more time on the porting process and use a
fully qualified package, as in Examples 6-3 and 6-4.

Example 6-3. Book/Counter.pm

package Book::Counter;

my $counter = 0;

sub run {
$counter = 0;
for (1..5) {

increment_counter();
}
}

sub increment counter {
$counter++;
print "Counter is equal to $counter [
\n";

Exposing Apache::Registry Secrets | 223

Example 6-3. Book/Counter.pm (continued)

1;
END

Example 6-4. counter-clean.pl

use strict;
use Book::Counter;

print "Content-type: text/plain\n\n";
Book: :Counter::run();

As you can see, the only difference is in the package declaration. As long as the pack-
age name is unique, you won’t encounter any collisions with other scripts running
on the same server.

Another solution to this problem is to change the lexical variables to global vari-
ables. There are two ways global variables can be used:

* Using the vars pragma. With the use strict 'vars' setting, global variables can

be used after being declared with vars. For example, this code:

use strict;

use vars gqw($counter $result);

later in the code

$counter = 0;

$result = 1;
is similar to this code if use strict is not used:

$counter = 0;

$result = 1;
However, the former style of coding is much cleaner, because it allows you to
use global variables by declaring them, while avoiding the problem of mis-
spelled variables being treated as undeclared globals.

The only drawback to using vars is that each global declared with it consumes
more memory than the undeclared but fully qualified globals, as we will see in
the next item.

* Using fully qualified variables. Instead of using $counter, we can use $Foo::
counter, which will place the global variable $counter into the package Foo. Note
that we don’t know which package name Apache::Registry will assign to the
script, since it depends on the location from which the script will be called.
Remember that globals must always be initialized before they can be used.

Perl 5.6.x also introduces a third way, with the our() declaration. our() can be used
in different scopes, similar to my(), but it creates global variables.

Finally, it’s possible to avoid this problem altogether by always passing the variables
as arguments to the functions (see Example 6-5).

224 | (Chapter6: Coding with mod_perl in Mind

Example 6-5. counter2.pl

#!/usx/bin/perl -w
use strict;

print "Content-type: text/plain\n\n";
my $counter = 0;

for (1..5) {
$counter = increment counter($counter);
}

sub increment counter {
my $counter = shift;

$counter++;
print "Counter is equal to $counter !\n";

return $counter;

}

In this case, there is no variable-sharing problem. The drawback is that this approach
adds the overhead of passing and returning the variable from the function. But on
the other hand, it ensures that your code is doing the right thing and is not depen-
dent on whether the functions are wrapped in other blocks, which is the case with
the Apache: :Registry handlers family.

When Stas (one of the authors of this book) had just started using mod_perl and
wasn’t aware of the nested subroutine problem, he happened to write a pretty com-
plicated registration program that was run under mod_perl. We will reproduce here
only the interesting part of that script:

use CGI;

$q = CGI->new;

my $name = $q->param('name');

print_response();

sub print_response {
print "Content-type: text/plain\n\n";
print "Thank you, $name!";
}
Stas and his boss checked the program on the development server and it worked fine,
so they decided to put it in production. Everything seemed to be normal, but the boss
decided to keep on checking the program by submitting variations of his profile using
The Boss as his username. Imagine his surprise when, after a few successful submis-
sions, he saw the response “Thank you, Stas!” instead of “Thank you, The Boss!”

After investigating the problem, they learned that they had been hit by the nested
subroutine problem. Why didn’t they notice this when they were trying the software
on their development server? We'll explain shortly.

Exposing Apache::Registry Secrets | 225

To conclude this first mystery, remember to keep the warnings mode On on the devel-
opment server and to watch the error_log file for warnings.

The Second Mystery—Inconsistent Growth over Reloads

Let’s return to our original example and proceed with the second mystery we
noticed. Why have we seen inconsistent results over numerous reloads?

What happens is that each time the parent process gets a request for the page, it
hands the request over to a child process. Each child process runs its own copy of the
script. This means that each child process has its own copy of $counter, which will
increment independently of all the others. So not only does the value of each
$counter increase independently with each invocation, but because different chil-
dren handle the requests at different times, the increment seems to grow inconsis-
tently. For example, if there are 10 httpd children, the first 10 reloads might be
correct (if each request went to a different child). But once reloads start reinvoking
the script from the child processes, strange results will appear.

Moreover, requests can appear at random since child processes don’t always run the
same requests. At any given moment, one of the children could have served the same
script more times than any other, while another child may never have run it.

Stas and his boss didn’t discover the aforementioned problem with the user registra-
tion system before going into production because the error_log file was too crowded
with warnings continuously logged by multiple child processes.

To immediately recognize the problem visually (so you can see incorrect results), you
need to run the server as a single process. You can do this by invoking the server with
the -X option:

panic% httpd -X

Since there are no other servers (children) running, you will get the problem report
on the second reload.

Enabling the warnings mode (as explained earlier in this chapter) and monitoring the
error_log file will help you detect most of the possible errors. Some warnings can
become errors, as we have just seen. You should check every reported warning and
eliminate it, so it won’t appear in error_log again. If your error_log file is filled up
with hundreds of lines on every script invocation, you will have difficulty noticing
and locating real problems, and on a production server you’ll soon run out of disk
space if your site is popular.

Namespace Issues

If your service consists of a single script, you will probably have no namespace prob-
lems. But web services usually are built from many scripts and handlers. In the

226 | (Chapter6: Codingwith mod_perl in Mind

following sections, we will investigate possible namespace problems and their solu-
tions. But first we will refresh our understanding of two special Perl variables, ®INC
and %INC.

The @INC Array

Perl’s @INC array is like the PATH environment variable for the shell program. Whereas
PATH contains a list of directories to search for executable programs, @INC contains a
list of directories from which Perl modules and libraries can be loaded.

When you use(), require(), or do() a filename or a module, Perl gets a list of direc-
tories from the @INC variable and searches them for the file it was requested to load. If
the file that you want to load is not located in one of the listed directories, you must
tell Perl where to find the file. You can either provide a path relative to one of the
directories in @INC or provide the absolute path to the file.

The %INC Hash

Perl’s $INC hash is used to cache the names of the files and modules that were loaded
and compiled by use(), require(), or do() statements. Every time a file or module is
successfully loaded, a new key-value pair is added to %INC. The key is the name of the
file or module as it was passed to one of the three functions we have just mentioned.
If the file or module was found in any of the @INC directories (except "."), the file-
names include the full path. Each Perl interpreter, and hence each process under
mod_perl, has its own private %$INC hash, which is used to store information about its
compiled modules.

Before attempting to load a file or a module with use() or require(), Perl checks
whether it’s already in the %INC hash. If it’s there, the loading and compiling are not
performed. Otherwise, the file is loaded into memory and an attempt is made to com-
pile it. Note that do() loads the file or module unconditionally—it does not check the
%INC hash. We’ll look at how this works in practice in the following examples.

First, let’s examine the contents of @INC on our system:

panic% perl -le 'print join "\n", @INC'
/usr/1ib/perl5/5.6.1/1386-1inux
/usr/1ib/perls/5.6.1

/usr/1ib/perl5/site perl/5.6.1/1386-1inux
/usr/lib/perl5/site perl/5.6.1
/usr/1lib/perls/site_perl

Notice . (the current directory) as the last directory in the list.

Let’s load the module strict.pm and see the contents of $INC:

panic% perl -le 'use strict; print map {"$_=> $INC{$_}"} keys %INC'
strict.pm => /usr/lib/perl5/5.6.1/strict.pm

Namespace Issues | 227

Since strict.pm was found in the /usr/lib/perl5/5.6.1/ directory and /ust/lib/perl5/5.6.1/
is a part of @INC, %INC includes the full path as the value for the key strict.pm.

Let’s create the simplest possible module in /tmp/test.pm:
1;

This does absolutely nothing, but it returns a true value when loaded, which is
enough to satisfy Perl that it loaded correctly. Let’s load it in different ways:
panic% cd /tmp
panic% perl -e 'use test; \
print map { "$_ => $INC{$_}\n" } keys %INC'
test.pm => test.pm
Since the file was found in . (the directory the code was executed from), the relative
path is used as the value. Now let’s alter @INC by appending /tmp:
panic% cd /tmp
panic% perl -e 'BEGIN { push @INC, "/tmp" } use test; \
print map { "$_ => $INC{$_}\n" } keys ZINC'
test.pm => test.pm

« »

Here we still get the relative path, since the module was found first relative to
The directory /tmp was placed after . in the list. If we execute the same code from a

different directory, the “.” directory won’t match:

panic% cd /

panic% perl -e 'BEGIN { push @INC, "/tmp" } use test; \
print map { "$_ => $INC{$_}\n" } keys %INC'

test.pm => /tmp/test.pm

so we get the full path. We can also prepend the path with unshift(), so that it will

@ »

be used for matching before “.”. We will get the full path here as well:

panic% cd /tmp

panic% perl -e 'BEGIN { unshift @INC, "/tmp" } use test; \
print map { "$_ => $INC{$ }\n" } keys %INC'

test.pm => /tmp/test.pm

The code:
BEGIN { unshift @INC, "/tmp" }
can be replaced with the more elegant:
use lib "/tmp";
This is almost equivalent to our BEGIN block and is the recommended approach.

These approaches to modifying @INC can be labor intensive: moving the script around
in the filesystem might require modifying the path.

Name Collisions with Modules and Libraries

In this section, we’ll look at two scenarios with failures related to namespaces. For
the following discussion, we will always look at a single child process.

228 | (Chapter6: Codingwith mod_perl in Mind

A first faulty scenario

It is impossible to use two modules with identical names on the same server. Only
the first one found in a use() or a require() statement will be loaded and compiled.
All subsequent requests to load a module with the same name will be skipped,
because Perl will find that there is already an entry for the requested module in the
%INC hash.

Let’s examine a scenario in which two independent projects in separate directories,
projectA and projectB, both need to run on the same server. Both projects use a mod-
ule with the name MyConfig.pm, but each project has completely different code in its
MyConfig.pm module. This is how the projects reside on the filesystem (all located
under the directory /home/httpd/perl):

projectA/MyConfig.pm

projectA/run.pl

projectB/MyConfig.pm

projectB/run.pl

Examples 6-6, 6-7, 6-8, and 6-9 show some sample code.

Example 6-6. projectAlrun.pl

use 1lib qw(.);
use MyConfig;
print "Content-type: text/plain\n\n";

print "Inside project: ", project_name();

Example 6-7. projectA/MyConfig.pm
sub project name { return 'A'; }
1;
Example 6-8. projectB/run.pl

use 1lib gw(.);

use MyConfig;

print "Content-type: text/plain\n\n";
print "Inside project: ", project name();
Example 6-9. projectB/MyConfig.pm

sub project name { return 'B'; }

1;

Both projects contain a script, run.pl, which loads the module MyConfig.pm and prints
an indentification message based on the project_name() function in the MyConfig.pm
module. When a request to /perl/projectA/run.pl is issued, it is supposed to print:

Inside project: A
Similarly, /perl/projectB/run.pl is expected to respond with:

Inside project: B

Namespace Issues | 229

When tested using single-server mode, only the first one to run will load the
MyConfig.pm module, although both run.pl scripts call use MyConfig. When the sec-
ond script is run, Perl will skip the use MyConfig; statement, because MyConfig.pm is
already located in %$INC. Perl reports this problem in the error_log:

Undefined subroutine

&Apache: :ROOT: :perl::projectB: :run_2epl::project _name called at

/home/httpd/perl/projectB/run.pl line 4.
This is because the modules didn’t declare a package name, so the project name()
subroutine was inserted into projectA/run.pl’s namespace, Apache::ROOT::perl::
projectB: :run 2epl. Project B doesn’t get to load the module, so it doesn’t get the
subroutine either!

Note that if a library were used instead of a module (for example, config.pl instead
of MyConfig.pm), the behavior would be the same. For both libraries and modules, a
file is loaded and its filename is inserted into %INC.

A second faulty scenario
Now consider the following scenario:

project/MyConfig.pm
project/runA.pl
project/runB.pl

Now there is a single project with two scripts, runA.pl and runB.pl, both trying to
load the same module, MyConfig.pm, as shown in Examples 6-10, 6-11, and 6-12.

Example 6-10. project/MyConfig.pm

sub project name { return 'Super Project'; }
1;

Example 6-11. project/runA.pl

use 1lib gw(.);
use MyConfig;
print "Content-type: text/plain\n\n";
print "Script A\n";

print "Inside project:

, project_name();

Example 6-12. project/runB.pl

use 1lib qw(.);

use MyConfig;

print "Content-type: text/plain\n\n";
print "Script B\n";

print "Inside project: ", project_name();

This scenario suffers from the same problem as the previous two-project scenario:
only the first script to run will work correctly, and the second will fail. The problem
occurs because there is no package declaration here.

230 | Chapter6: Coding with mod_perl in Mind

We’ll now explore some of the ways we can solve these problems.

A quick but ineffective hackish solution

The following solution should be used only as a short term bandage. You can force
reloading of the modules either by fiddling with %INC or by replacing use() and
require() calls with do().

If you delete the module entry from the $INC hash before calling require() or use(),
the module will be loaded and compiled again. See Example 6-13.

Example 6-13. project/runA.pl

BEGIN {
delete $INC{"MyConfig.pm"};

use lib gw(.);

use MyConfig;

print "Content-type: text/plain\n\n";
print "Script A\n";

print "Inside project: ", project_name();

Apply the same fix to runB.pl.

Another alternative is to force module reload via do(), as seen in Example 6-14.

Example 6-14. project/runA.pl forcing module reload by using do() instead of use()
use lib gw(.);

do "MyConfig.pm";

print "Content-type: text/plain\n\n";

print "Script B\n";
print "Inside project:

", project _name();

Apply the same fix to runB.pl.

If you needed to import() something from the loaded module, call the import()
method explicitly. For example, if you had:

use MyConfig qw(foo bar);
now the code will look like:

do "MyConfig.pm";

MyConfig->import(qw(foo bar));
Both presented solutions are ultimately ineffective, since the modules in question
will be reloaded on each request, slowing down the response times. Therefore, use
these only when a very quick fix is needed, and make sure to replace the hack with
one of the more robust solutions discussed in the following sections.

Namespace Issues | 231

A first solution

The first faulty scenario can be solved by placing library modules in a subdirectory
structure so that they have different path prefixes. The new filesystem layout will be:
projectA/ProjectA/MyConfig.pm
projectA/run.pl

projectB/ProjectB/MyConfig.pm
projectB/run.pl

The run.pl scripts will need to be modified accordingly:
use ProjectA::MyConfig;

and:
use ProjectB::MyConfig;

However, if later on we want to add a new script to either of these projects, we will
hit the problem described by the second problematic scenario, so this is only half a
solution.

A second solution

Another approach is to use a full path to the script, so the latter will be used as a key
in ZINC:

require "/home/httpd/perl/project/MyConfig.pm";

With this solution, we solve both problems but lose some portability. Every time a
project moves in the filesystem, the path must be adjusted. This makes it impossible
to use such code under version control in multiple-developer environments, since
each developer might want to place the code in a different absolute directory.

A third solution

This solution makes use of package-name declaration in the require()d modules.
For example:

package ProjectA::Config;
Similarly, for ProjectB, the package name would be ProjectB: :Config.

Each package name should be unique in relation to the other packages used on the
same httpd server. $INC will then use the unique package name for the key instead of
the filename of the module. It’s a good idea to use at least two-part package names
for your private modules (e.g., MyProject: :Carp instead of just Carp), since the latter
will collide with an existing standard package. Even though a package with the same
name may not exist in the standard distribution now, in a later distribution one may
come along that collides with a name you’ve chosen.

What are the implications of package declarations? Without package declarations in
the modules, it is very convenient to use() and require(), since all variables and
subroutines from the loaded modules will reside in the same package as the script

232 | Chapter6: Coding with mod_perl in Mind

itself. Any of them can be used as if it was defined in the same scope as the script
itself. The downside of this approach is that a variable in a module might conflict
with a variable in the main script; this can lead to hard-to-find bugs.

With package declarations in the modules, things are a bit more complicated. Given
that the package name is PackageA, the syntax PackageA: :project_name() should be
used to call a subroutine project name() from the code using this package. Before
the package declaration was added, we could just call project_name(). Similarly, a
global variable $foo must now be referred to as $PackageA: : foo, rather than simply as
$foo. Lexically defined variables (declared with my()) inside the file containing
PackageA will be inaccessible from outside the package.

You can still use the unqualified names of global variables and subroutines if these
are imported into the namespace of the code that needs them. For example:

use MyPackage qw(:mysubs sub b $varl :myvars);

Modules can export any global symbols, but usually only subroutines and global
variables are exported. Note that this method has the disadvantage of consuming
more memory. See the perldoc Exporter manpage for information about exporting
other variables and symbols.

Let’s rewrite the second scenario in a truly clean way. This is how the files reside on
the filesystem, relative to the directory /home/httpd/perl:

project/MyProject/Config.pm
project/runA.pl
project/runB.pl

Examples 6-15, 6-16, and 6-17 show how the code will look.

Example 6-15. project/MyProject/Config.pm

package MyProject::Config
sub project _name { return 'Super Project'; }
15

Example 6-16. project/runB.pl

use lib gw(.);

use MyProject::Config;

print "Content-type: text/plain\n\n";

print "Script B\n";

print "Inside project: ", MyProject::Config::project name();

Example 6-17. project/runA.pl

use lib gw(.);

use MyProject::Config;

print "Content-type: text/plain\n\n";

print "Script A\n";

print "Inside project: ", MyProject::Config::project name();

Namespace Issues | 233

As you can see, we have created the MyProject/Config.pm file and added a package
declaration at the top of it:

package MyProject::Config
Now both scripts load this module and access the module’s subroutine, project_
name(), with a fully qualified name, MyProject: :Config: :project_name().

See also the perlmodlib and perlmod manpages.

From the above discussion, it also should be clear that you cannot run development
and production versions of the tools using the same Apache server. You have to run
a dedicated server for each environment. If you need to run more than one develop-
ment environment on the same server, you can use Apache: :Per1VINC, as explained in
Appendix B.

Perl Specifics in the mod_ perl Environment

In the following sections, we discuss the specifics of Perl’s behavior under mod_perl.

exit()

Perl’s core exit() function shouldn’t be used in mod_perl code. Calling it causes the
mod_perl process to exit, which defeats the purpose of using mod_perl. The Apache: :
exit() function should be used instead. Starting with Perl Version 5.6.0, mod_perl
overrides exit() behind the scenes using CORE: :GLOBAL: :, a new magical package.

The CORE:: Package

CORE:: is a special package that provides access to Perl’s built-in functions. You may
need to use this package to override some of the built-in functions. For example, if you
want to override the exit(') built-in function, you can do so with:

use subs qw(exit);

exit() if $DEBUG;

sub exit { warn "exit() was called"; }
Now when you call exit(') in the same scope in which it was overridden, the program
won’t exit, but instead will just print a warning “exit() was called”. If you want to use
the original built-in function, you can still do so with:

the 'real' exit
CORE: :exit();

Apache: :Registry and Apache: :PerlRun override exit() with Apache::exit() behind
the scenes; therefore, scripts running under these modules don’t need to be modi-
fied to use Apache: :exit().

234 | (Chapter6: Coding with mod_perl in Mind

If CORE: :exit() is used in scripts running under mod_perl, the child will exit, but the
current request won’t be logged. More importantly, a proper exit won’t be per-
formed. For example, if there are some database handles, they will remain open,
causing costly memory and (even worse) database connection leaks.

If the child process needs to be killed, Apache::exit(Apache::Constants::DONE)
should be used instead. This will cause the server to exit gracefully, completing the
logging functions and protocol requirements.

If the child process needs to be killed cleanly after the request has completed, use the
$r->child_terminate method. This method can be called anywhere in the code, not
just at the end. This method sets the value of the MaxRequestsPerChild configuration
directive to 1 and clears the keepalive flag. After the request is serviced, the current
connection is broken because of the keepalive flag, which is set to false, and the par-
ent tells the child to cleanly quit because MaxRequestsPerChild is smaller than or
equal to the number of requests served.

In an Apache: :Registry script you would write:
Apache->request->child terminate;

and in httpd.conf:
PerlFixupHandler "sub { shift->child terminate }"

You would want to use the latter example only if you wanted the child to terminate
every time the registered handler was called. This is probably not what you want.

You can also use a post-processing handler to trigger child termination. You might
do this if you wanted to execute your own cleanup code before the process exits:
my $r = shift;

$r->post_connection(\&exit child);

sub exit child {
some logic here if needed
$r->child_terminate;
}
This is the code that is used by the Apache: :SizelLimit module, which terminates pro-
cesses that grow bigger than a preset quota.

die()
die() is usually used to abort the flow of the program if something goes wrong. For
example, this common idiom is used when opening files:

open FILE, "foo" or die "Cannot open 'foo' for reading: $!";

If the file cannot be opened, the script will die(): script execution is aborted, the rea-
son for death is printed, and the Perl interpreter is terminated.

Perl Specifics in the mod_perl Environment | 235

You will hardly find any properly written Perl scripts that don’t have at least one
die() statement in them.

CGI scripts running under mod_cgi exit on completion, and the Perl interpreter exits
as well. Therefore, it doesn’t matter whether the interpreter exits because the script
died by natural death (when the last statement in the code flow was executed) or was
aborted by a die() statement.

Under mod_perl, we don’t want the process to quit. Therefore, mod_perl takes care
of it behind the scenes, and die() calls don’t abort the process. When die() is
called, mod_perl logs the error message and calls Apache: :exit() instead of CORE::
die(). Thus, the script stops, but the process doesn’t quit. Of course, we are talking
about the cases where the code calling die() is not wrapped inside an exception han-
dler (e.g., an eval {} block) that traps die() calls, or the $SIG{_DIE__} sighandler,
which allows you to override the behavior of die() (see Chapter 21). The reference
section at the end of this chapter mentions a few exception-handling modules avail-
able from CPAN.

Global Variable Persistence

Under mod_perl a child process doesn’t exit after serving a single request. Thus, glo-
bal variables persist inside the same process from request to request. This means that
you should be careful not to rely on the value of a global variable if it isn’t initialized
at the beginning of each request. For example:

the very beginning of the script

use strict;

use vars qw($c0unter);

$counter++;
relies on the fact that Perl interprets an undefined value of $counter as a zero value,
because of the increment operator, and therefore sets the value to 1. However, when
the same code is executed a second time in the same process, the value of $counter is
not undefined any more; instead, it holds the value it had at the end of the previous
execution in the same process. Therefore, a cleaner way to code this snippet would be:

use strict;

use vars quw($counter);

$counter = 0;

$counter++;
In practice, you should avoid using global variables unless there really is no alterna-
tive. Most of the problems with global variables arise from the fact that they keep
their values across functions, and it’s easy to lose track of which function modifies
the variable and where. This problem is solved by localizing these variables with
local(). But if you are already doing this, using lexical scoping (with my()) is even
better because its scope is clearly defined, whereas localized variables are seen and

236 | Chapter6: Coding with mod_perl in Mind

can be modified from anywhere in the code. Refer to the perlsub manpage for more
details. Our example will now be written as:

use strict;

my $counter = 0;

$counter++;
Note that it is a good practice to both declare and initialize variables, since doing so
will clearly convey your intention to the code’s maintainer.

You should be especially careful with Perl special variables, which cannot be lexi-
cally scoped. With special variables, local() must be used. For example, if you want
to read in a whole file at once, you need to undef() the input record separator. The
following code reads the contents of an entire file in one go:

open IN, $file or die $!;

$/ = undef;

$content = <IN>; # slurp the whole file in
close IN;

Since you have modified the special Perl variable $/ globally, it’ll affect any other
code running under the same process. If somewhere in the code (or any other code
running on the same server) there is a snippet reading a file’s content line by line,
relying on the default value of $/ (\n), this code will work incorrectly. Localizing the
modification of this special variable solves this potential problem:

{

local $/; # $/ is undef now
$content = <IN>; # slurp the whole file in

}
Note that the localization is enclosed in a block. When control passes out of the
block, the previous value of $/ will be restored automatically.

STDIN, STDOUT, and STDERR Streams

Under mod_perl, both STDIN and STDOUT are tied to the socket from which the
request originated. If, for example, you use a third-party module that prints some
output to STDOUT when it shouldn’t (for example, control messages) and you want to
avoid this, you must temporarily redirect STDOUT to /dev/null. You will then have to
restore STDOUT to the original handle when you want to send a response to the client.
The following code demonstrates a possible implementation of this workaround:
{

my $nullfh = Apache::gensym();

open $nullfh, '>/dev/null’ or die "Can't open /dev/null: $!";

local *STDOUT = $nullfh;

call something thats way too verbose();
close $nullfh;

Perl Specifics in the mod_perl Environment | 237

The code defines a block in which the STDOUT stream is localized to print to /dev/null.
When control passes out of this block, STDOUT gets restored to the previous value.

STDERR is tied to a file defined by the ErrorLog directive. When native syslog support
is enabled, the STDERR stream will be redirected to /dev/null.

Redirecting STDOUT into a Scalar Variable

Sometimes you encounter a black-box function that prints its output to the default
file handle (usually STDOUT) when you would rather put the output into a scalar. This
is very relevant under mod_perl, where STDOUT is tied to the Apache request object. In
this situation, the I0::String package is especially useful. You can re-tie() STDOUT
(or any other file handle) to a string by doing a simple select() on the I0::String
object. Call select() again at the end on the original file handle to re-tie(') STDOUT
back to its original stream:

my $str;
my $str fh = I0::String->new($str);

my $old fh = select($str_fh);

black_box_print();

select($old fh) if defined $old fh;
In this example, a new I0::String object is created. The object is then selected, the
black box print() function is called, and its output goes into the string object.
Finally, we restore the original file handle, by re-select()ing the originally selected
file handle. The $str variable contains all the output produced by the black_box_
print() function.

print()
Under mod_perl, CORE: :print() (using either STDOUT as a filehandle argument or no
filehandle at all) will redirect output to Apache: :print(), since the STDOUT file handle
is tied to Apache. That is, these two are functionally equivalent:

print "Hello";

$r->print("Hello");
Apache::print() will return immediately without printing anything if $r->
connection->aborted returns true. This happens if the connection has been aborted
by the client (e.g., by pressing the Stop button).

There is also an optimization built into Apache: :print(): if any of the arguments to
this function are scalar references to strings, they are automatically dereferenced.
This avoids needless copying of large strings when passing them to subroutines. For
example, the following code will print the actual value of $long_string:

my $long_string = "A" x 10000000;
$r->print(\$long_string);

238 | Chapter6: Coding with mod_perl in Mind

To print the reference value itself, use a double reference:
$r->print(\\$long_string);

When Apache::print() sees that the passed value is a reference, it dereferences it
once and prints the real reference value:

SCALAR (0x8576€0c)

Formats

The interface to file handles that are linked to variables with Perl’s tie() function is
not yet complete. The format() and write() functions are missing. If you configure
Perl with sfio, write() and format() should work just fine.

Instead of format(), you can use printf(). For example, the following formats are
equivalent:

format printf

HE %2.2f
HHEHL G %421

To print a string with fixed-length elements, use the printf() format %n.ms where n
is the length of the field allocated for the string and m is the maximum number of
characters to take from the string. For example:

printf "[%5.35][%10.10s][%30.30s]\n",
12345, "John Doe", "1234 Abbey Road"

prints:
[123][John Doe][1234 Abbey Road]

Notice that the first string was allocated five characters in the output, but only three
were used because m=5 and n=3 (%5.3s). If you want to ensure that the text will
always be correctly aligned without being truncated, n should always be greater than
or equal to m.

You can change the alignment to the left by adding a minus sign (-) after the %. For
example:

printf "[%-5.5s][%-10.10s][%-30.30s]\n",
123, "John Doe", "1234 Abbey Road"

prints:
[123][John Doe][1234 Abbey Road]
You can also use a plus sign (+) for the right-side alignment. For example:

printf "[%+5s][%+10s][%+30s]\n",
123, "John Doe", "1234 Abbey Road"

prints:

[123][John Doe][1234 Abbey Road]

Perl Specifics in the mod_perl Environment | 239

Another alternative to format() and printf() is to use the Text::Reform module
from CPAN.

In the examples above we’ve printed the number 123 as a string (because we used
the %s format specifier), but numbers can also be printed using numeric formats. See
perldoc -f sprintf for full details.

Output from System Calls

The output of system(), exec(), and open(PIPE," |program") calls will not be sent to
the browser unless Perl was configured with sfio. To learn if your version of Perl is
sfio-enabled, look at the output of the perl -V command for the useperlio and d_sfio
strings.

You can use backticks as a possible workaround:
print “command here’;

But this technique has very poor performance, since it forks a new process. See the
discussion about forking in Chapter 10.

BEGIN blocks

Perl executes BEGIN blocks as soon as possible, when it’s compiling the code. The
same is true under mod_perl. However, since mod_perl normally compiles scripts
and modules only once, either in the parent process or just once per child, BEGIN
blocks are run only once. As the perlmod manpage explains, once a BEGIN block has
run, it is immediately undefined. In the mod_perl environment, this means that
BEGIN blocks will not be run during the response to an incoming request unless that
request happens to be the one that causes the compilation of the code. However,
there are cases when BEGIN blocks will be rerun for each request.

BEGIN blocks in modules and files pulled in via require() or use() will be executed:

* Only once, if pulled in by the parent process.
* Once per child process, if not pulled in by the parent process.

* One additional time per child process, if the module is reloaded from disk by
Apache: :StatINC.

* One additional time in the parent process on each restart, if PerlFreshRestart is
On.

* On every request, if the module with the BEGIN block is deleted from %INC, before
the module’s compilation is needed. The same thing happens when do() is used,
which loads the module even if it’s already loaded.

240 | Chapter6: Coding with mod_perl in Mind

BEGIN blocks in Apache: :Registry scripts will be executed:

* Only once, if pulled in by the parent process via Apache: :RegistrylLoader.
* Once per child process, if not pulled in by the parent process.
* One additional time per child process, each time the script file changes on disk.

* One additional time in the parent process on each restart, if pulled in by the par-
ent process via Apache: :Registryloader and PerlFreshRestart is On.

Note that this second list is applicable only to the scripts themselves. For the mod-
ules used by the scripts, the previous list applies.

END Blocks

As the perlmod manpage explains, an END subroutine is executed when the Perl inter-
preter exits. In the mod_perl environment, the Perl interpreter exits only when the
child process exits. Usually a single process serves many requests before it exits, so
END blocks cannot be used if they are expected to do something at the end of each
request’s processing.

If there is a need to run some code after a request has been processed, the $r->
register cleanup() function should be used. This function accepts a reference to a
function to be called during the PerlCleanupHandler phase, which behaves just like
the END block in the normal Perl environment. For example:

$r->register cleanup(sub { warn "$$ does cleanup\n" });
or:

sub cleanup { warn "$$ does cleanup\n" };

$r->register cleanup(\&cleanup);
will run the registered code at the end of each request, similar to END blocks under
mod_cgi.

As you already know by now, Apache::Registry handles things differently. It does
execute all END blocks encountered during compilation of Apache: :Registry scripts at
the end of each request, like mod_cgi does. That includes any END blocks defined in
the packages use()d by the scripts.

If you want something to run only once in the parent process on shutdown and
restart, you can use register cleanup() in startup.pl:

warn "parent pid is $$\n";
Apache->server->register cleanup(
sub { warn "server cleanup in $$\n" });
This is useful when some server-wide cleanup should be performed when the server
is stopped or restarted.

Perl Speifics in the mod_perl Environment | 241

CHECK and INIT Blocks

The CHECK and INIT blocks run when compilation is complete, but before the pro-
gram starts. CHECK can mean “checkpoint,” “double-check,” or even just “stop.” INIT
stands for “initialization.” The difference is subtle: CHECK blocks are run just after the
compilation ends, whereas INIT blocks are run just before the runtime begins (hence,
the -c command-line flag to Perl runs up to CHECK blocks but not INIT blocks).

Perl calls these blocks only during perl parse(), which mod_perl calls once at star-
tup time. Therefore, CHECK and INIT blocks don’t work in mod_perl, for the same rea-
son these don’t:

panic% perl -e 'eval qq(CHECK { print "ok\n" })'
panic% perl -e 'eval qq(INIT { print "ok\n" })'

SAT and time()

Under mod_perl, processes don’t quit after serving a single request. Thus, $*T gets
initialized to the server startup time and retains this value throughout the process’s
life. Even if you don’t use this variable directly, it’s important to know that Perl refers
to the value of $°T internally.

For example, Perl uses $°T with the -M, -C, or -A file test operators. As a result, files
created after the child server’s startup are reported as having a negative age when
using those operators. -M returns the age of the script file relative to the value of the
$/T special variable.

If you want to have -M report the file’s age relative to the current request, reset $"T,
just as in any other Perl script. Add the following line at the beginning of your
scripts:

local $°T = time;
You can also do:
local $°T = $r->request time;

The second technique is better performance-wise, as it skips the time() system call
and uses the timestamp of the request’s start time, available via the $r->request_time
method.

If this correction needs to be applied to a lot of handlers, a more scalable solution is
to specify a fixup handler, which will be executed during the fixup stage:

sub Apache: :PerlBaseTime: :handler {

$°T = shift->request_time;

return Apache::Constants: :DECLINED;
}

and then add the following line to httpd.conf:

PerlFixupHandler Apache::PerlBaseTime

242 | Chapter6: Coding with mod_perl in Mind

Now no modifications to the content-handler code and scripts need to be performed.

Command-Line Switches

When a Perl script is run from the command line, the shell invokes the Perl inter-
preter via the #!/bin/perl directive, which is the first line of the script (sometimes
referred to as the shebang line). In scripts running under mod_cgi, you may use Perl
switches as described in the perlrun manpage, such as -w, -T, or -d. Under the
Apache: :Registry handlers family, all switches except -w are ignored (and use of the
-T switch triggers a warning). The support for -w was added for backward compati-
bility with mod_cgi.

Most command-line switches have special Perl variable equivalents that allow them
to be set/unset in code. Consult the perlvar manpage for more details.

mod_perl provides its own equivalents to -w and -T in the form of configuration
directives, as we’ll discuss presently.

Finally, if you still need to set additional Perl startup flags, such as -d and -D, you
can use the PERL50PT environment variable. Switches in this variable are treated as if
they were on every Perl command line. According to the perlrun manpage, only the
-[DIMUdmw] switches are allowed.

Warnings
There are three ways to enable warnings:

Globally to all processes
In hitpd.conf, set:

PerlWarn On

You can then fine-tune your code, turning warnings off and on by setting the $"W
variable in your scripts.

Locally to a script
Including the following line:

#!/usr/bin/perl -w

will turn warnings on for the scope of the script. You can turn them off and on
in the script by setting the $"W variable, as noted above.

Locally to a block
This code turns warnings on for the scope of the block:
{
local $™W = 1;
some code

}

$"W assumes its previous value here

CHECKand INITBlocks | 243

This turns warnings off:

{
local $"W = 0;
some code

}

$”W assumes its previous value here
If $7W isn’t properly localized, this code will affect the current request and all
subsequent requests processed by this child. Thus:

$"W = 0;
will turn the warnings off, no matter what.
If you want to turn warnings on for the scope of the whole file, as in the previ-
ous item, you can do this by adding:

local $™W = 1;
at the beginning of the file. Since a file is effectively a block, file scope behaves
like a block’s curly braces ({ }), and local $"W at the start of the file will be
effective for the whole file.

While having warnings mode turned on is essential for a development server, you
should turn it globally off on a production server. Having warnings enabled introduces
a non-negligible performance penalty. Also, if every request served generates one warn-
ing, and your server processes millions of requests per day, the error_log file will eat up
all your disk space and the system won’t be able to function normally anymore.

Perl 5.6.x introduced the warnings pragma, which allows very flexible control over
warnings. This pragma allows you to enable and disable groups of warnings. For
example, to enable only the syntax warnings, you can use:

use warnings 'syntax';

Later in the code, if you want to disable syntax warnings and enable signal-related
warnings, you can use:

no warnings ‘syntax’';
use warnings 'signal';

But usually you just want to use:
use warnings;

which is the equivalent of:
use warnings ‘'all’;

If you want your code to be really clean and consider all warnings as errors, Perl will
help you to do that. With the following code, any warning in the lexical scope of the
definition will trigger a fatal error:

use warnings FATAL => 'all’;

Of course, you can fine-tune the groups of warnings and make only certain groups of
warnings fatal. For example, to make only closure problems fatal, you can use:

use warnings FATAL => 'closure';

244 | (Chapter6: Coding with mod_perl in Mind

Using the warnings pragma, you can also disable warnings locally:

{

no warnings;

some code that would normally emit warnings
}

In this way, you can avoid some warnings that you are aware of but can’t do any-
thing about.

For more information about the warnings pragma, refer to the perllexwarn manpage.

Taint mode

Perl’s -T switch enables taint mode. In taint mode, Perl performs some checks on
how your program is using the data passed to it. For example, taint checks prevent
your program from passing some external data to a system call without this data
being explicitly checked for nastiness, thus avoiding a fairly large number of com-
mon security holes. If you don’t force all your scripts and handlers to run under taint
mode, it’s more likely that you’ll leave some holes to be exploited by malicious users.
(See Chapter 23 and the perlsec manpage for more information. Also read the re
pragma’s manpage.)

Since the -T switch can’t be turned on from within Perl (this is because when Perl is
running, it’s already too late to mark all external data as tainted), mod_perl provides
the Per1TaintCheck directive to turn on taint checks globally. Enable this mode with:

PerlTaintCheck On
anywhere in httpd.conf (though it’s better to place it as early as possible for clarity).

For more information on taint checks and how to untaint data, refer to the perlsec
manpage.

Compiled Regular Expressions

When using a regular expression containing an interpolated Perl variable that you are
confident will not change during the execution of the program, a standard speed-
optimization technique is to add the /o modifier to the regex pattern. This compiles
the regular expression once, for the entire lifetime of the script, rather than every
time the pattern is executed. Consider:

my $pattern = '*\d+$'; # likely to be input from an HTML form field

foreach (@list) {
print if /$pattern/o;
}

This is usually a big win in loops over lists, or when using the grep() or map()
operators.

CHECKand INITBlocks | 245

In long-lived mod_perl scripts and handlers, however, the variable may change with
each invocation. In that case, this memorization can pose a problem. The first
request processed by a fresh mod_perl child process will compile the regex and per-
form the search correctly. However, all subsequent requests running the same code
in the same process will use the memorized pattern and not the fresh one supplied by
users. The code will appear to be broken.

Imagine that you run a search engine service, and one person enters a search key-
word of her choice and finds what she’s looking for. Then another person who hap-
pens to be served by the same process searches for a different keyword, but
unexpectedly receives the same search results as the previous person.

There are two solutions to this problem.

The first solution is to use the eval q// construct to force the code to be evaluated
each time it’s run. It’s important that the eval block covers the entire processing
loop, not just the pattern match itself.

The original code fragment would be rewritten as:

my $pattern = '"\d+$';
eval q{
foreach (@list) {
print if /$pattern/o;
}
}

If we were to write this:

foreach (@list) {
eval q{ print if /$pattern/o; };
}
the regex would be compiled for every element in the list, instead of just once for the
entire loop over the list (and the /o modifier would essentially be useless).

However, watch out for using strings coming from an untrusted origin inside eval—
they might contain Perl code dangerous to your system, so make sure to sanity-check
them first.

This approach can be used if there is more than one pattern-match operator in a given
section of code. If the section contains only one regex operator (be itm// ors///), you
can rely on the property of the null pattern, which reuses the last pattern seen. This
leads to the second solution, which also eliminates the use of eval.

The above code fragment becomes:

my $pattern = ""\d+$';
"0" =~ /$pattern/; # dummy match that must not faill
foreach (@list) {
print if //;
}

246 | Chapter6: Coding with mod_perl in Mind

The only caveat is that the dummy match that boots the regular expression engine
must succeed—otherwise the pattern will not be cached, and the // will match every-
thing. If you can’t count on fixed text to ensure the match succeeds, you have two
options.

If you can guarantee that the pattern variable contains no metacharacters (such as *,
+,7,$,\d, etc.), you can use the dummy match of the pattern itself:

$pattern =~ /\Q$pattern\E/; # guaranteed if no metacharacters present
The \Q modifier ensures that any special regex characters will be escaped.

If there is a possibility that the pattern contains metacharacters, you should match
the pattern itself, or the nonsearchable \377 character, as follows:

"\377" =~ /$pattern|~\377$/; # guaranteed if metacharacters present

Matching patterns repeatedly

Another technique may also be used, depending on the complexity of the regex to
which it is applied. One common situation in which a compiled regex is usually
more efficient is when you are matching any one of a group of patterns over and over
again.

To make this approach easier to use, we’ll use a slightly modified helper routine from
Jeffrey Friedl’s book Mastering Regular Expressions (O’Reilly):

sub build match many function {
my @list = @_;
my $expr = join '[|',
map { "\$_[0] =~ m/\$1ist[$]/0" } (0..$#list);
my $matchsub = eval "sub { $expr }";
die "Failed in building regex @list: $@" if $@;
return $matchsub;

}
This function accepts a list of patterns as an argument, builds a match regex for each
item in the list against $_[0], and uses the logical || (OR) operator to stop the match-
ing when the first match succeeds. The chain of pattern matches is then placed into a
string and compiled within an anonymous subroutine using eval. If eval fails, the code
aborts with die(); otherwise, a reference to this subroutine is returned to the caller.

Here is how it can be used:

my @agents = gw(Mozilla Lynx MSIE AmigaVoyager lwp libwww);
my $known_agent sub = build match_many function(@agents);

while (<ACCESS LOG>) {
my $agent = get agent field($);
warn "Unknown Agent: $agent\n"
unless $known agent sub->($agent);

CHECKand INITBlocks | 247

This code takes lines of log entries from the access_log file already opened on the
ACCESS_LOG file handle, extracts the agent field from each entry in the log file, and
tries to match it against the list of known agents. Every time the match fails, it prints
a warning with the name of the unknown agent.

An alternative approach is to use the qr// operator, which is used to compile a regex.
The previous example can be rewritten as:

my @agents = gw(Mozilla Lynx MSIE AmigaVoyager lwp libwww);
my @compiled re = map qr/$_/, @agents;

while (<ACCESS LOG>) {
my $agent = get agent field($);
my $ok = 0;
for my $re (@compiled re) {
$ok = 1, last if /$re/;
}

warn "Unknown Agent: $agent\n"
unless $ok;
}
In this code, we compile the patterns once before we use them, similar to build
match_many function() from the previous example, but now we save an extra call to
a subroutine. A simple benchmark shows that this example is about 2.5 times faster
than the previous one.

Apache::Registry Specifics

The following coding issues are relevant only for scripts running under the Apache::
Registry content handler and similar handlers, such as Apache::PerlRun. Of course,
all of the mod_perl specifics described earlier apply as well.

__END__ and __DATA__ Tokens

An Apache::Registry script cannot contain __END__ or _ DATA _ tokens, because
Apache: :Registry wraps the original script’s code into a subroutine called handler(),
which is then called. Consider the following script, accessed as /perl/test.pl:

print "Content-type: text/plain\n\n";

print "Hi";
When this script is executed under Apache::Registry, it becomes wrapped in a
handler() subroutine, like this:

package Apache::ROOT::perl::test 2epl;

use Apache gw(exit);

sub handler {

print "Content-type: text/plain\n\n";
print "Hi";

248 | Chapter6: Coding with mod_perl in Mind

If we happen to put an __END__ tag in the code, like this:
print "Content-type: text/plain\n\n";
print "Hi";
__END__
Some text that wouldn't be normally executed
it will be turned into:

package Apache::ROOT::perl::test 2epl;
use Apache gw(exit);
sub handler {
print "Content-type: text/plain\n\n";
print "Hi";
END
Some text that wouldn't be normally executed

}
When issuing a request to /perl/test.pl, the following error will then be reported:
Missing right bracket at line 4, at end of line

Perl cuts everything after the __END__ tag. Therefore, the subroutine handler()’s clos-
ing curly bracket is not seen by Perl. The same applies to the _DATA _ tag.

Symbolic Links

Apache: :Registry caches the script in the package whose name is constructed from
the URI from which the script is accessed. If the same script can be reached by differ-
ent URIs, which is possible if you have used symbolic links or aliases, the same script
will be stored in memory more than once, which is a waste.

For example, assuming that you already have the script at /home/httpd/perl/news/
news.pl, you can create a symbolic link:

panic% 1n -s /home/httpd/perl/news/news.pl /home/httpd/perl/news.pl

Now the script can be reached through both URIs, /news/news.pl and /news.pl. This
doesn’t really matter until the two URIs get advertised and users reach the same
script from the two of them.

Now start the server in single-server mode and issue a request to both URIs:

http://localhost/perl/news/news.pl
http://localhost/perl/news.pl

To reveal the duplication, you should use the Apache: :Status module. Among other
things, it shows all the compiled Apache::Registry scripts (using their respective
packages). If you are using the default configuration directives, you should either use
this URI:

http://localhost/perl-status?rgysubs
or just go to the main menu at:

http://localhost/perl-status

Apache::Registry Specifics | 249

and click on the “Compiled Registry Scripts” menu item.

If the script was accessed through the two URIs, you will see the output shown in
Figure 6-1.

L1006

| Q e @ Q i |% hitpoitocalhost:S00000er-status froysubs | dfgg .LI”H
Al 1
» [» |

Embedded Perl version v5.6.1 for Apache/1.3.25-dev (Unix) mod_perl/1.26_01-dev =
process 23081,
J| running since Thu May 16 18:18:17 2002

i Click on package name to see its symbol table

Anache:ROOT perlinews: news_2enl
Anache:ROOT perlinews 2epl

|03 &F 6 & [emmmomomon ey

Figure 6-1. Compiled Registry Scripts output

You can usually spot this kind of problem by running a link checker that goes recur-
sively through all the pages of the service by following all links, and then using Apache:
:Status to find the symlink duplicates (without restarting the server, of course). To
make it easier to figure out what to look for, first find all symbolic links. For example,
in our case, the following command shows that we have only one symlink:

panic% find /home/httpd/perl -type 1

/home/httpd/perl/news.pl
So now we can look for that symlink in the output of the Compiled Registry Scripts
section.

Notice that if you perform the testing in multi-server mode, some child processes
might show only one entry or none at all, since they might not serve the same
requests as the others.

Return Codes

Apache: :Registry normally assumes a return code of OK (200) and sends it for you.
If a different return code needs to be sent, $r->status() can be used. For example, to
send the return code 404 (Not Found), you can use the following code:

use Apache::Constants qw(NOT_FOUND);

$r->status(NOT_FOUND);
If this method is used, there is no need to call $r->send_http header() (assuming
that the PerlSendHeader Off setting is in effect).

250 | Chapter6: Coding with mod_perl in Mind

Transition from mod_ cgi Scripts to Apache
Handlers

If you don’t need to preserve backward compatibility with mod_cgi, you can port
mod_cgi scripts to use mod_perl-specific APIs. This allows you to benefit from fea-
tures not available under mod_cgi and gives you better performance for the features
available under both. We have already seen how easily Apache::Registry turns
scripts into handlers before they get executed. The transition to handlers is straight-
forward in most cases.

Let’s see a transition example. We will start with a mod_cgi-compatible script run-
ning under Apache: :Registry, transpose it into a Perl content handler without using
any mod_perl-specific modules, and then convert it to use the Apache: :Request and
Apache: :Cookie modules that are available only in the mod_perl environment.

Starting with a mod_cgi-Compatible Script

Example 6-18 shows the original script’s code.

Example 6-18. cookie_script.pl

use strict;

use CCI;

use CGI::Cookie;

use vars qw($q $switch $status $sessionID);

init();
print_header();
print_status();

sub init {
$q = new CGI;
$switch = $g->param("switch") ? 1 : 0;
my %cookies = CGI::Cookie->fetch;
$sessionID = exists $cookies{'sessionID'}
? $cookies{'sessionID'}->value

PR
1

0 = not running, 1 = running
$status = $sessionID ? 1 : 0;
switch status if asked to
$status = !$status if $switch;

if ($status) {
preserve sessionID if it exists or create a new one

$sessionID ||= generate sessionID() if $status;
} else {

delete the sessionID

$sessionID = '';

Transition from mod_cgi Scripts to Apache Handlers | 251

Example 6-18. cookie_script.pl (continued)
}

sub print_header {
my $c = CGI::Cookie->new(
-name => 'sessionID',
-value => $sessionID,
-expires => '+1h'

)s

print $g->header(
-type => 'text/html’,
-cookie => $c
)s
}

print the current Session status and a form to toggle the status
sub print_status {

print qg{<html><head><title>Cookie</title></head><body>};

print "Status: ",
$status
? "Session is running with ID: $sessionID"

: "No session is running";

change status form
my $button label = $status ? "Stop" : "Start";
print qq{<hr>
<form>
<input type=submit name=switch value=" $button label ">
</form>

b
print qg{</body></html>};

}

A dummy ID generator
Replace with a real session ID generator
SHUEHHHE S R
sub generate_sessionID {
return scalar localtime;

}

The code is very simple. It creates a session when you press the Start button and
deletes it when you pressed the Stop button. The session is stored and retrieved
using cookies.

We have split the code into three subroutines. init() initializes global variables and
parses incoming data. print_header() prints the HTTP headers, including the cookie

252 | Chapter6: Coding with mod_perl in Mind

header. Finally, print_status() generates the output. Later, we will see that this logi-
cal separation will allow an easy conversion to Perl content-handler code.

We have used a few global variables, since we didn’t want to pass them from func-
tion to function. In a big project, you should be very restrictive about what variables
are allowed to be global, if any. In any case, the init() subroutine makes sure all
these variables are reinitialized for each code reinvocation.

We have used a very simple generate_sessionID() function that returns a current
date-time string (e.g., Wed Apr 12 15:02:23 2000) as a session ID. You’ll want to
replace this with code that generates a unique and unpredictable session ID each
time it is called.

Converting into a Perl Content Handler

Let’s now convert this script into a content handler. There are two parts to this task:
first configure Apache to run the new code as a Perl handler, then modify the code
itself.

First we add the following snippet to httpd.conf:

PerlModule Book::Cookie
<Location /test/cookie>
SetHandler perl-script
PerlHandler Book::Cookie
</Location>

and restart the server.

When a request whose URI starts with /test/cookie is received, Apache will execute
the Book: :Cookie: :handler() subroutine (which we will look at presently) as a con-
tent handler. We made sure we preloaded the Book: :Cookie module at server startup
with the PerlModule directive.

Now we modify the script itself. We copy its contents to the file Cookie.pm and place
it into one of the directories listed in @INC. In this example, we’ll use /home/httpd/
perl, which we added to @INC. Since we want to call this package Book: : Cookie, we’ll
put Cookie.pm into the /home/httpd/perl/Book/ directory.

The changed code is in Example 6-19. As the subroutines were left unmodified from
the original script, they aren’t reproduced here (so you’ll see the differences more
clearly.)

Example 6-19. Book/Cookie.pm

package Book: :Cookie;
use Apache::Constants qw(:common);

use strict;
use CGI;
use CGI::Cookie;

Transition from mod_cgi Scripts to Apache Handlers | 253

Example 6-19. Book/Cookie.pm

use vars qw($q $switch $status $sessionID);

sub handler {
my $r = shift;

init();
print_header();
print_status();

return OK;

}

all subroutines unchanged
1;
Two lines have been added to the beginning of the code:

package Book::Cookie;

use Apache::Constants qw(:common);
The first line declares the package name, and the second line imports constants com-
monly used in mod_perl handlers to return status codes. In our case, we use the 0K
constant only when returning from the handler() subroutine.

The following code is left unchanged:

use strict;

use CGI;

use CGI::Cookie;

use vars qw($q $switch $status $sessionID);

We add some new code around the subroutine calls:

sub handler {
my $r = shift;

init();
print_header();
print status();

return OK;

}

Each content handler (and any other handler) should begin with a subroutine called
handler(). This subroutine is called when a request’s URI starts with /test/cookie, as
per our configuration. You can choose a different subroutine name—for example,
execute()—but then you must explicitly specify that name in the configuration
directives in the following way:

PerlModule Book::Cookie

<Location /test/cookie>

SetHandler perl-script

PerlHandler Book::Cookie::execute
</Location>

254 | Chapter6: Coding with mod_perl in Mind

We will use the default name, handler().

The handler() subroutine is just like any other subroutine, but generally it has the
following structure:

sub handler {
my $r = shift;

the code

status (OK, DECLINED or else)
return OK;
}
First, we retrieve a reference to the request object by shifting it from @ _and assigning
it to the $r variable. We’ll need this a bit later.

Second, we write the code that processes the request.

Third, we return the status of the execution. There are many possible statuses; the
most commonly used are 0K and DECLINED. OK tells the server that the handler has
completed the request phase to which it was assigned. DECLINED means the opposite,
in which case another handler will process this request. Apache::Constants exports
these and other commonly used status codes.

In our example, all we had to do was to wrap the three calls:
init();
print_header();
print status();
inside the handler() skeleton:
sub handler {
my $r = shift;
return OK;
}
Last, we need to add 1; at the end of the module, as we do with any Perl module.
This ensures that PerIModule doesn’t fail when it tries to load Book: : Cookie.

To summarize, we took the original script’s code and added the following seven
lines:

package Book::Cookie;
use Apache::Constants qw(:common);

sub handler {
my $r = shift;

return OK;

}

1;

and we now have a fully-fledged Perl content handler.

Transition from mod_cgi Scripts to Apache Handlers | 255

Converting to use the mod_perl APl and mod_ perl-Specific
Modules

Now that we have a complete PerlHandler, let’s convert it to use the mod_perl API
and mod_perl-specific modules. First, this may give us better performance where the
internals of the API are implemented in C. Second, this unleashes the full power of
Apache provided by the mod_perl API, which is only partially available in the mod_
cgi-compatible modules.

We are going to replace CGI.pm and CGI::Cookie with their mod_perl-specific equiva-
lents: Apache: :Request and Apache: : Cookie, respectively. These two modules are writ-
ten in C with the XS interface to Perl, so code that uses these modules heavily runs
much faster.

Apache: :Request has an API similar to CGI’s, and Apache: :Cookie has an API similar to
CGI::Cookie’s. This makes porting straightforward. Essentially, we just replace:

use CGI;
$q = new CGI;
with:

use Apache::Request ();
$q = Apache: :Request->new($r);

And we replace:

use CGI::Cookie ();
my $cookie = CGI::Cookie->new(...)

with:

use Apache::Cookie ();
my $cookie = Apache::Cookie->new($r, ...);

Example 6-20 is the new code for Book: : Cookie2.

Example 6-20. Book/Cookie2.pm

package Book::Cookie2;
use Apache::Constants qu(:common);

use strict;

use Apache::Request ();

use Apache::Cookie ();

use vars qw($r $q $switch $status $sessionID);

sub handler {
$r = shift;

init();
print_header();
print status();

return OK;

256 | Chapter6: Coding with mod_perl in Mind

Example 6-20. Book/Cookie2.pm (continued)

}

sub

sub

}

init {

$q = Apache::Request->new($r);
$switch = $q->param("switch") ? 1 : 0;

my %cookies = Apache::Cookie->fetch;
$sessionID = exists $cookies{'sessionID'}

[N

? $cookies{'sessionID'}->value : '';

0 = not running, 1 = running
$status = $sessionID ? 1 : 0;
switch status if asked to
$status = !$status if $switch;

if ($status) {
preserve sessionID if it exists or create a new one

$sessionID ||= generate sessionID() if $status;
} else {
delete the sessionID
$sessionID = '';
}
print_header {
my $c = Apache::Cookie->new(
$r,
-name => 'sessionID',

-value => $sessionID,
-expires => '+1h');

Add a Set-Cookie header to the outgoing headers table
$c->bake;

$r->send_http_header('text/html');

print the current Session status and a form to toggle the status

sub

print_status {

print qq{<html><head><title>Cookie</title></head><body>};
print "Status: ",
$status
? "Session is running with ID: $sessionID"
: "No session is running";

change status form
my $button label = $status ? "Stop" : "Start";
print qq{<hr>

<form>

Transition from mod_cgi Scripts to Apache Handlers

257

Example 6-20. Book/Cookie2.pm (continued)

<input type=submit name=switch value=" $button label ">
</form>

b
print qg{</body></html>};

}

replace with a real session ID generator
sub generate sessionID {

return scalar localtime;
}

1;

The only other changes are in the print_header() function. Instead of passing the
cookie code to CGI’s header (') function to return a proper HTTP header, like this:
print $q->header(
-type => 'text/html’,
-cookie => $c);
we do it in two stages. First, the following line adds a Set-Cookie header to the out-
going headers table:

$c->bake;

Then this line sets the Content-Type header to text/html and sends out the whole
HTTP header:

$r->send_http _header('text/html");
The rest of the code is unchanged.

The last thing we need to do is add the following snippet to httpd.conf:

PerIModule Book::Cookie2
<Location /test/cookie2>
SetHandler perl-script
PerlHandler Book::Cookie2
</Location>
Now the magic URI that will trigger the above code execution will be one starting
with /test/cookie2. We save the code in the file /home/httpd/perl/Book/Cookie2.pm,
since we have called this package Book: : Cookie2.

As you've seen, converting well-written CGI code into mod_perl handler code is
straightforward. Taking advantage of mod_perl-specific features and modules is also
generally simple. Very little code needs to be changed to convert a script.

Note that to make the demonstration simple to follow, we haven’t changed the style
of the original package. But by all means consider doing that when porting real code:
use lexicals instead of globals, apply mod_perl API functions where applicable, etc.

258 | Chapter6: Coding with mod_perl in Mind

Loading and Reloading Modules

You often need to reload modules in development and production environments.
mod_perl tries hard to avoid unnecessary module reloading, but sometimes (espe-
cially during the development process) we want some modules to be reloaded when
modified. The following sections discuss issues related to module loading and
reloading.

The @INC Array Under mod_perl

Under mod_perl, @INC can be modified only during server startup. After each
request, mod_perl resets @INC’s value to the one it had before the request.

If mod_perl encounters a statement like the following:
use lib gw(foo/bar);
it modifies @INC only for the period during which the code is being parsed and com-

piled. Afterward, @INC is reset to its original value. Therefore, the only way to change
@INC permanently is to modify it at server startup.

There are two ways to alter @INC at server startup:

* In the configuration file, with:
PerlSetEnv PERLSLIB /home/httpd/perl
or:
PerlSetEnv PERL5LIB /home/httpd/perl:/home/httpd/mymodules
* In the startup.pl file:
use 1ib qw(/home/httpd/perl /home/httpd/mymodules);
1
As always, the startup file needs to be loaded from httpd.conf:
PerlRequire /path/to/startup.pl

To make sure that you have set @INC correctly, configure perl-status into your
server, as explained in Chapter 21. Follow the “Loaded Modules” item in the menu
and look at the bottom of the generated page, where the contents of @INC are shown:

@INC =

/home/httpd/mymodules

/home/httpd/perl
/usr/1lib/perl5/5.6.1/1386-1inux
/usr/1ib/perls/5.6.1

/usr/1ib/perl5/site perl/5.6.1/i386-1inux
/usr/lib/perl5/site perl/5.6.1
/usr/1ib/perls/site_perl

/home/httpd/httpd_perl/
/home/httpd/httpd_perl/1ib/perl

Loading and Reloading Modules | 259

As you can see in our setup, we have two custom directories prepended at the begin-
ning of the list. The rest of the list contains standard directories from the Perl distri-
bution, plus the $ServerRoot and $ServerRoot/lib/perl directories appended at the
end (which mod_perl adds automatically).

Reloading Modules and Required Files

When working with mod_cgi, you can change the code and rerun the CGI script
from your browser to see the changes. Since the script isn’t cached in memory, the
server starts up a new Perl interpreter for each request, which loads and recompiles
the script from scratch. The effects of any changes are immediate.

The situation is different with mod_perl, since the whole idea is to get maximum
performance from the server. By default, the server won’t spend time checking
whether any included library modules have been changed. It assumes that they
weren’t, thus saving the time it takes to stat() the source files from any modules
and libraries you use() and require() in your script.

If the scripts are running under Apache: :Registry, the only check that is performed is
to see whether your main script has been changed. If your scripts do not use() or
require() any other Perl modules or packages, there is nothing to worry about. If,
however, you are developing a script that includes other modules, the files you use()
or require() aren’t checked for modification, and you need to do something about
that.

There are a couple of techniques to make a mod_perl-enabled server recognize
changes in library modules. They are discussed in the following sections.

Restarting the server

The simplest approach is to restart the server each time you apply some change to
your code. Restarting techniques are covered in Chapter 5. After restarting the server
about 50 times, you will tire of it and look for other solutions.

Using Apache::StatINC

Help comes from the Apache::StatINC module. When Perl pulls in a file with
require(), it stores the full pathname as a value in the global hash %INC with the file-
name as the key. Apache: :StatINC looks through %INC and immediately reloads any
file that has been updated on the disk.

To enable this module, add these two lines to httpd.conf:

PerIModule Apache::StatINC
PerlInitHandler Apache::StatINC

260 | Chapter6: Coding with mod_perl in Mind

To be sure it really works, turn on debug mode on your development system by add-
ing PerlSetVar StatINCDebug On to your configuration file. You end up with some-
thing like this:
PerlModule Apache::StatINC
PerlInitHandler Apache::StatINC
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGI
PerlSendHeader On
PerlSetVar StatINCDebug On
</Location>
Be aware that only the modules located in @INC are reloaded on change, and you can
change @INC only before the server has been started (in the startup file).

« »

Note the following trap: because “.”, the current directory, is in @INC, Perl knows
how to require() files with pathnames relative to the current script’s directory. After
the code has been parsed, however, the server doesn’t remember the path. So if the
code loads a module MyModule located in the directory of the script and this directory
is not in @INC, you end up with the following entry in %INC:

'MyModule.pm' => 'MyModule.pm'

When Apache: :StatINC tries to check whether the file has been modified, it won’t be
able to find the file, since MyModule.pm is not in any of the paths in @INC. To correct
this problem, add the module’s location path to ®@INC at server startup.

Using Apache::Reload

Apache: :Reload is a newer module that comes as a drop-in replacement for Apache: :
StatINC. It provides extra functionality and is more flexible.

To make Apache: :Reload check all the loaded modules on each request, just add the
following line to httpd.conf:

PerlInitHandler Apache::Reload

To reload only specific modules when these get changed, three alternatives are pro-
vided: registering the module implicitly, registering the module explicitly, and set-
ting up a dummy file to touch whenever you want the modules reloaded.

To use implicit module registration, turn off the ReloadAll variable, which is on by

default:

PerlInitHandler Apache::Reload
PerlSetVar ReloadAll Off

and add the following line to every module that you want to be reloaded on change:

use Apache::Reload;

Loading and Reloading Modules | 261

Alternatively, you can explicitly specify modules to be reloaded in httpd.conf:

PerlInitHandler Apache::Reload

PerlSetVar ReloadModules "Book::Foo Book::Bar Foo::Bar::Test"
Note that these are split on whitespace, but the module list must be in quotes, or
Apache will try to parse the parameter list itself.

You can register groups of modules using the metacharacter *:
PerlSetVar ReloadModules "Foo::* Bar::*"

In the above example, all modules starting with Foo:: and Bar:: will become regis-
tered. This feature allows you to assign all the modules in a project using a single
pattern.

The third option is to set up a file that you can touch to cause the reloads to be per-
formed:

PerlSetVar ReloadTouchFile /tmp/reload modules

Now when you’re happy with your changes, simply go to the command line and
type:
panic% touch /tmp/reload modules

If you set this, and don’t touch the file, the reloads won’t happen (regardless of how
the modules have been registered).

This feature is very convenient in a production server environment, but compared to
a full restart, the benefits of preloaded modules memory-sharing are lost, since each
child will get its own copy of the reloaded modules.

Note that Apache: :Reload might have a problem with reloading single modules con-
taining multiple packages that all use pseudo-hashes. The solution: don’t use
pseudo-hashes. Pseudo-hashes will be removed from newer versions of Perl anyway.

Just like with Apache: :StatInc, if you have modules loaded from directories that are
not in @INC, Apache: :Reload will fail to find the files. This is because @INC is reset to its
original value even if it gets temporarily modified in the script. The solution is to
extend @INC at server startup to include all the directories from which you load files
that aren’t in the standard @INC paths.

Using dynamic configuration files

Sometimes you may want an application to monitor its own configuration file and
reload it when it is altered. But you don’t want to restart the server for these changes
to take effect. The solution is to use dynamic configuration files.

Dynamic configuration files are especially useful when you want to provide adminis-
trators with a configuration tool that modifies an application on the fly. This
approach eliminates the need to provide shell access to the server. It can also prevent
typos, because the administration program can verify the submitted modifications.

262 | Chapter6: Codingwith mod_perl in Mind

It’s possible to get away with Apache: :Reload and still have a similar small overhead
for the stat() call, but this requires the involvement of a person who can modify
httpd.conf to configure Apache::Reload. The method described next has no such
requirement.

Writing configuration files. We’ll start by describing various approaches to writing con-
figuration files, and their strengths and weaknesses.

If your configuration file contains only a few variables, it doesn’t matter how you
write the file. In practice, however, configuration files often grow as a project devel-
ops. This is especially true for projects that generate HTML files, since they tend to
demand many easily configurable settings, such as the location of headers, footers,
templates, colors, and so on.

A common approach used by CGI programmers is to define all configuration vari-
ables in a separate file. For example:

$cgi dir = '/home/httpd/perl’;

$cgi url = '/perl';

$docs_dir = '/home/httpd/docs’;

$docs url = '/*;

$img dir = '/home/httpd/docs/images";
$img url = '/images';

... many more config params here ...
$color_hint = '#777777';

$color warn = '#990066";

$color normal = '#000000";

The use strict; pragma demands that all variables be declared. When using these
variables in a mod_perl script, we must declare them with use vars in the script, so
we start the script with:

use strict;
use vars qw($cgi dir $cgi url $docs dir $docs url

... many more config params here
$color hint $color warn $color normal
)

It is a nightmare to maintain such a script, especially if not all features have been
coded yet—we have to keep adding and removing variable names. Since we’re writ-
ing clean code, we also start the configuration file with use strict;, so we have to
list the variables with use vars here as well—a second list of variables to maintain.
Then, as we write many different scripts, we may get name collisions between config-
uration files.

The solution is to use the power of Perl’s packages and assign a unique package
name to each configuration file. For example, we might declare the following pack-
age name:

package Book::Configo;

Loading and Reloading Modules | 263

Now each configuration file is isolated into its own namespace. But how does the
script use these variables? We can no longer just require() the file and use the vari-
ables, since they now belong to a different package. Instead, we must modify all our
scripts to use the configuration variables’ fully qualified names (e.g., referring to
$Book: :Config0::cgi url instead of just $cgi url).

You may find typing fully qualified names tedious, or you may have a large reposi-
tory of legacy scripts that would take a while to update. If so, you’ll want to import
the required variables into any script that is going to use them. First, the configura-
tion package has to export those variables. This entails listing the names of all the
variables in the @EXPORT_OK hash. See Example 6-21.

Example 6-21. Book/Config0.pm

package Book::Config0;
use strict;

BEGIN {

use Exporter ();

@Book: :HTML: : ISA = qw(Exporter);

@Book: :HTML: : EXPORT = qw();

@Book: :HTML: :EXPORT_OK = qw($cgi_dir $cgi url $docs_dir $docs_url
... many more config params here
$color_hint $color warn $color normal);

}

use vars qw($cgi dir $cgi url $docs dir $docs url
... many more config params here
$color hint $color warn $color normal
)5

$cgi dir = '/home/httpd/perl’;
$cgi url = "/perl’';
$docs_dir = '/home/httpd/docs’;

$docs_url = '/";

$img dir = '/home/httpd/docs/images’;
$img url = '/images';

... many more config params here ...
$color_hint = "#777777";

$color warn = "#990066";

$color normal = "#000000";

A script that uses this package will start with this code:

use strict;

use Book::Configo qw($cgi_dir $cgi url $docs dir $docs_url
... many more config params here
$color_hint $color_warn $color_normal

)

use vars qw($cgi dir $cgi url $docs dir $docs url
... many more config params here
$color hint $color warn $color normal

)s

264 | Chapter6: Codingwith mod_perl in Mind

Whoa! We now have to update at least three variable lists when we make a change in
naming of the configuration variables. And we have only one script using the config-
uration file, whereas a real-life application often contains many different scripts.

There’s also a performance drawback: exported variables add some memory over-
head, and in the context of mod_perl this overhead is multiplied by the number of
server processes running.

There are a number of techniques we can use to get rid of these problems. First, vari-
ables can be grouped in named groups called tags. The tags are later used as argu-
ments to the import() or use() calls. You are probably familiar with:

use CGI gw(:standard :html);

We can implement this quite easily, with the help of export ok tags() from
Exporter. For example:
BEGIN {

use Exporter ();

use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);

@ISA = qw(Exporter);

@EXPORT - ();

@EXPORT OK = ();

%EXPORT_TAGS = (
vars => [qw($firstname $surname)],
subs => [qw(reread conf untaint path)],
)5
Exporter::export_ok_tags('vars');
Exporter::export ok tags('subs');
}
In the script using this configuration, we write:
use Book::Config0 qw(:subs :vars);

Subroutines are exported exactly like variables, since symbols are what are actually
being exported. Notice we don’t use export_tags(), as it exports the variables auto-
matically without the user asking for them (this is considered bad style). If a module
automatically exports variables with export tags(), you can avoid unnecessary
imports in your script by using this syntax:

use Book::Configo ();

You can also go even further and group tags into other named groups. For example,
the :all tag from CGI.pm is a group tag of all other groups. It requires a little more
effort to implement, but you can always save time by looking at the solution in CGI.
pm’s code. It’s just a matter of an extra code to expand all the groups recursively.

As the number of variables grows, however, your configuration will become
unwieldy. Consider keeping all the variables in a single hash built from references to
other scalars, anonymous arrays, and hashes. See Example 6-22.

Loading and Reloading Modules | 265

Example 6-22. Book/Configl.pm

package Book::Configi;
use strict;

BEGIN {
use Exporter ();
@Book: :Configl: :ISA = qw(Exporter);
@Book: :Configl: :EXPORT = quw();
@Book: :Configl: :EXPORT OK = quw(%c);
}

use vars qw(%c);

% = (
dir => {
cgi => '/home/httpd/perl’,
docs => '/home/httpd/docs’,
img => '/home/httpd/docs/images’,
b
url => {
cgi => '/perl',
docs => /',
img => '/images',
b
color => {
hint => '#777777',
warn => '#990066",
normal => '#000000',
b
)s

Good Perl style suggests keeping a comma at the end of each list. This makes it easy
to add new items at the end of a list.

Our script now looks like this:

use strict;

use Book::Configl quw(%c);

use vars qw(%c);

print "Content-type: text/plain\n\n";
print "My url docs root: $c{url}{docs}\n";

The whole mess is gone. Now there is only one variable to worry about.

The one small downside to this approach is auto-vivification. For example, if we
write $c{url}{doc} by mistake, Perl will silently create this element for us with the
value undef. When we use strict;, Perl will tell us about any misspelling of this
kind for a simple scalar, but this check is not performed for hash elements. This puts
the onus of responsibility back on us, since we must take greater care.

266 | Chapter6: Codingwith mod_perl in Mind

The benefits of the hash approach are significant. Let’s make it even better by get-
ting rid of the Exporter stuff completely, removing all the exporting code from the
configuration file. See Example 6-23.

Example 6-23. Book/Config2.pm

package Book::Config2;
use strict;
use vars qw(%c);

%c = (
dir => {
cgi => '/home/httpd/perl’,
docs => '/home/httpd/docs’,
img => '/home/httpd/docs/images’,
b
url => {
cgli => '/perl',
docs => /',
img => '/images',
}
color => {
hint => '#777777',
warn => '#990066",
normal => '#000000',
1
)s

Our script is modified to use fully qualified names for the configuration variables it
uses:

use strict;

use Book::Config2 ();

print "Content-type: text/plain\n\n";

print "My url docs root: $Book::Config2::c{url}{docs}\n";

To save typing and spare the need to use fully qualified variable names, we’ll use a
magical Perl feature to alias the configuration variable to a script’s variable:

use strict;

use Book::Config2 ();

use vars qw(%c);

*c = \%Book::Config2::c;

print "Content-type: text/plain\n\n";
print "My url docs root: $c{url}{docs}\n";

We’ve aliased the *c glob with a reference to the configuration hash. From now on,
%Book: :Config2: :c and %c refer to the same hash for all practical purposes.
One last point: often, redundancy is introduced in configuration variables. Consider:

$cgi dir = '/home/httpd/perl’;
$docs_dir = '/home/httpd/docs’;
$img_dir = '/home/httpd/docs/images’;

Loading and Reloading Modules | 267

It’s obvious that the base path /home/httpd should be moved to a separate variable,
so only that variable needs to be changed if the application is moved to another loca-
tion on the filesystem.

$base = '/home/httpd";
$cgi dir = "$base/perl";
$docs _dir = "$base/docs";
$img dir = "$docs_dir/images";
This cannot be done with a hash, since we cannot refer to its values before the defini-
tion is completed. That is, this will not work:
%c = (
base => '/home/httpd’,
dir => {
cgl => "$c{base}/perl”,
docs => "$c{base}/docs",
img => "$c{base}{docs}/images",
b
)s
But nothing stops us from adding additional variables that are lexically scoped with
my(). The following code is correct:
my $base = '/home/httpd’;
%c = (
dir => {
cgl => "$base/perl",
docs => "$base/docs"”,
img => "$base/docs/images",
b
)s
We’ve learned how to write configuration files that are easy to maintain, and how to
save memory by avoiding importing variables in each script’s namespace. Now let’s
look at reloading those files.

Reloading configuration files. First, lets look at a simple case, in which we just have to
look after a simple configuration file like the one below. Imagine a script that tells
you who is the patch pumpkin of the current Perl release.” (Pumpkin is a whimsical
term for the person with exclusive access to a virtual “token” representing a certain
authority, such as applying patches to a master copy of some source.)

use CGI ();
use strict;

my $firstname = "Jarkko";
my $surname = "Hietaniemi";
my $q = CGI->new;

* These are the recent pumpkins: Chip Salzenberg for 5.004, Gurusamy Sarathy for 5.005 and 5.6, Jarkko
Hietaniemi for 5.8, Hugo van der Sanden for 5.10.

268 | Chapter6: Codingwith mod_perl in Mind

print $q->header(-type=>"text/html"');
print $q->p("$firstname $surname holds the patch pumpkin" .
"for this Perl release.");

The script is very simple: it initializes the CGI object, prints the proper HTTP
header, and tells the world who the current patch pumpkin is. The name of the patch
pumpkin is a hardcoded value.

We don’t want to modify the script every time the patch pumpkin changes, so we
put the $firstname and $surname variables into a configuration file:

$firstname = "Jarkko";

$surname = "Hietaniemi";

1;
Note that there is no package declaration in the above file, so the code will be evalu-
ated in the caller’s package or in the main:: package if none was declared. This means
that the variables $firstname and $surname will override (or initialize) the variables
with the same names in the caller’s namespace. This works for global variables only—
you cannot update variables defined lexically (with my()) using this technique.

Let’s say we have started the server and everything is working properly. After a while,
we decide to modify the configuration. How do we let our running server know that
the configuration was modified without restarting it? Remember, we are in produc-
tion, and a server restart can be quite expensive. One of the simplest solutions is to poll
the file’s modification time by calling stat() before the script starts to do real work. If
we see that the file was updated, we can force a reconfiguration of the variables located
in this file. We will call the function that reloads the configuration reread _conf() and
have it accept the relative path to the configuration file as its single argument.

Apache: :Registry executes a chdir() to the script’s directory before it starts the
script’s execution. So if your CGI script is invoked under the Apache: :Registry han-
dler, you can put the configuration file in the same directory as the script. Alterna-
tively, you can put the file in a directory below that and use a path relative to the
script directory. However, you have to make sure that the file will be found, some-
how. Be aware that do() searches the libraries in the directories in @INC.

use vars qw(%MODIFIED);
sub reread conf {
my $file = shift;
return unless defined $file;
return unless -e $file and -r ;
my $mod = -M _;
unless (exists $MODIFIED{$file} and $MODIFIED{$file} == $mod) {
unless (my $result = do $file) {
warn "couldn't parse $file: $@" if $@;
warn "couldn't read $file: $!" unless defined $result;
warn "couldn't run $file" unless $result;

}
$MODIFIED{$file} = $mod; # Update the MODIFICATION times

Loading and Reloading Modules | 269

Notice that we use the == comparison operator when checking the file’s modifica-
tion timestamp, because all we want to know is whether the file was changed or not.

When the require(), use(), and do() operators successfully return, the file that was
passed as an argument is inserted into #INC. The hash element key is the name of the
file, and the element’s value is the file’s path. When Perl sees require() or use() in
the code, it first tests INC to see whether the file is already there and thus loaded. If
the test returns true, Perl saves the overhead of code rereading and recompiling;
however, calling do() will load or reload the file regardless of whether it has been
previously loaded.

We use do(), not require(), to reload the code in this file because although do()
behaves almost identically to require(), it reloads the file unconditionally. If do()
cannot read the file, it returns undef and sets $! to report the error. If do() can read
the file but cannot compile it, it returns undef and sets an error message in $@. If the
file is successfully compiled, do() returns the value of the last expression evaluated.

The configuration file can be broken if someone has incorrectly modified it. Since we
don’t want the whole service using that file to be broken that easily, we trap the pos-
sible failure to do() the file and ignore the changes by resetting the modification
time. If do() fails to load the file, it might be a good idea to send an email about the
problem to the system administrator.

However, since do() updates %INC like require() does, if you are using Apache::
StatINC it will attempt to reload this file before the reread conf() call. If the file
doesn’t compile, the request will be aborted. Apache::StatINC shouldn’t be used in
production anyway (because it slows things down by stat()ing all the files listed in
%INC), so this shouldn’t be a problem.

Note that we assume that the entire purpose of this function is to reload the configu-
ration if it was changed. This is fail-safe, because if something goes wrong we just
return without modifying the server configuration. The script should not be used to
initialize the variables on its first invocation. To do that, you would need to replace
each occurrence of return() and warn() with die().

We've used the above approach with a huge configuration file that was loaded only
at server startup and another little configuration file that included only a few vari-
ables that could be updated by hand or through the web interface. Those variables
were initialized in the main configuration file. If the webmaster breaks the syntax of
this dynamic file while updating it by hand, it won’t affect the main (write-pro-
tected) configuration file and won’t stop the proper execution of the programs. In
the next section, we will see a simple web interface that allows us to modify the con-
figuration file without the risk of breaking it.

Example 6-24 shows a sample script using our reread_conf() subroutine.

270 | Chapter6: Coding with mod_perl in Mind

Example 6-24. reread_conf.pl

use vars qw(%MODIFIED $firstname $surname);
use CGI ();
use strict;

my $q = CGI->new;

print $q->header(-type => 'text/plain');

my $config file = "./config.pl";

reread_conf($config file);

print $q->p("$firstname $surname holds the patch pumpkin" .
"for this Perl release.");

sub reread conf {
my $file = shift;
return unless defined $file;
return unless -e $file and -r ;
my $mod = -M _;
unless ($MODIFIED{$file} and $MODIFIED{$file} == $mod) {
unless (my $result = do $file) {
warn "couldn't parse $file: $@" if 3$@;
warn "couldn't read $file: $!" unless defined $result;
warn "couldn't run $file" unless $result;

}
$MODIFIED{$file} = $mod; # Update the MODIFICATION time

}

You should be using (stat $file)[9] instead of -M $file if you are modifying the
$°T variable. This is because -M returns the modification time relative to the Perl
interpreter startup time, set in $*T. In some scripts, it can be useful to reset $"T to the
time of the script invocation with "local $*T = time()". That way, -M and other -X
file status tests are performed relative to the script invocation time, not the time the
process was started.

If your configuration file is more sophisticated—for example, if it declares a package
and exports variables—the above code will work just as well. Variables need not be
import()ed again: when do() recompiles the script, the originally imported variables
will be updated with the values from the reloaded code.

Dynamically updating configuration files. The CGI script below allows a system adminis-
trator to dynamically update a configuration file through a web interface. This script,
combined with the code we have just seen to reload the modified files, gives us a sys-
tem that is dynamically reconfigurable without having to restart the server. Configu-
ration can be performed from any machine that has a browser.

Let’s say we have a configuration file like the one in Example 6-25.

Loading and Reloading Modules | 271

Example 6-25. Book/MainConfig.pm
package Book::MainConfig;

use strict;
use vars qw(%c);

%e = (
name => "larry Wall",
release => "5.000",
comments => "Adding more ways to do the same thing :)",

other => "More config values",

colors => { foreground => "black",
background => "white",

b

machines => [qw(primary secondary tertiary)],
)s

We want to make the variables name, release, and comments dynamically config-
urable. We’'ll need a web interface with an input form that allows modifications to
these variables. We'll also need to update the configuration file and propagate the
changes to all the currently running processes.

Let’s look at the main stages of the implementation:

1. Create a form with preset current values of the variables.

2. Let the administrator modify the variables and submit the changes.

3. Validate the submitted information (numeric fields should hold numbers within
a given range, etc.).

4. Update the configuration file.

5. Update the modified value in the current process’s memory.

6. Display the form as before with the (possibly changed) current values.

The only part that seems hard to implement is a configuration file update, for a cou-
ple of reasons. If updating the file breaks it, the whole service won’t work. If the file
is very big and includes comments and complex data structures, parsing the file can
be quite a challenge.

So let’s simplify the task. If all we want is to update a few variables, why don’t we
create a tiny configuration file containing just those variables? It can be modified
through the web interface and overwritten each time there is something to be
changed, so that we don’t have to parse the file before updating it. If the main config-
uration file is changed, we don’t care, because we don’t depend on it any more.

The dynamically updated variables will be duplicated in the main file and the
dynamic file. We do this to simplify maintenance. When a new release is installed,

272 | (Chapter6: Coding with mod_perl in Mind

the dynamic configuration file won’t exist—it will be created only after the first
update. As we just saw, the only change in the main code is to add a snippet to load

this file if it exists and was changed.

This additional code must be executed after the main configuration file has been
loaded. That way, the updated variables will override the default values in the main

file. See Example 6-26.

Example 6-26. manage_conf.pl

remember to run this code in taint mode
use strict;
use vars qw($q %c $dynamic_config file %vars_to_change %validation rules);

use CGI ();

use lib gw(.);
use Book::MainConfig ();
*c = \%Book: :MainConfig::c;

$dynamic_config file = "./config.pl";

load the dynamic configuration file if it exists, and override the
default values from the main configuration file
do $dynamic_config file if -e $dynamic_config file and -r _;

fields that can be changed and their captions
%vars_to_change =
(
"name’ => "Patch Pumpkin's Name",
'release’ => "Current Perl Release",
'comments' => "Release Comments",

)s

each field has an associated regular expression
used to validate the field's content when the
form is submitted

%validation rules =

(
"name’ => sub { $_[0] =~ /~[\w\s\.]+$/; 1},
'release’ => sub { $ [0] =~ /"\d+\.[\d_]+$/; 1},
"comments' => sub { 1; ,
)5
create the CGI object, and print the HTTP and HTML headers
$q = CGI->new;

print $q->header(-type=>"text/html"),
$q->start_html();

We always rewrite the dynamic config file, so we want all the

variables to be passed, but to save time we will only check

those variables that were changed. The rest will be retrieved from
the 'prev *' values.

Loading and Reloading Modules

273

Example 6-26. manage_conf.pl (continued)

my %updates = ();
foreach (keys %vars_to_change) {
copy var so we can modify it
my $new val = $q->param($_) || '';

strip a possible "M char (Win32)
$new_val =~ s/\cM//g;

push to hash if it was changed
$updates{$_} = $new val
if defined $q->param("prev " . $)
and $new_val ne $g->param("prev " . $);

Note that we cannot trust the previous values of the variables
since they were presented to the user as hidden form variables,
and the user could have mangled them. We don't care: this can’t do
any damage, as we verify each variable by rules that we define.

H O H H

Process if there is something to process. Will not be called if
it's invoked the first time to display the form or when the form
was submitted but the values weren't modified (we'll know by
comparing with the previous values of the variables, which are
the hidden fields in the form).

HOoH H HE R

process_changed config(%updates) if %updates;
show_modification_form();

update the config file, but first validate that the values are
acceptable
sub process changed config {

my %updates = @_;

we will list here all variables that don't validate
my %malformed = ();

print $q->b("Trying to validate these values
");
foreach (keys %updates) {
print "<dt>$_ => <pre>$updates{$_}</pre>";

now we have to handle each var to be changed very carefully,
since this file goes immediately into production!
$malformed{$ } = delete $updates{$ }

unless $validation rules{$ }->($updates{$ });

}

if (%malformed) {
print $g->hr,
$9->p($q->b(qq{Warning! These variables were changed
to invalid values. The original

274 | Chapter6: Coding with mod_perl in Mind

Example 6-26. manage_conf.pl (continued)
values will be kept.})

)5
join ",
",
map { $q->b($vars to change{$ }) . " : $malformed{$ }\n"

} keys %malformed;
}

Now complete the vars that weren't changed from the
$q->param('prev_var') values
map { $updates{$_} = $q->param('prev_' . $)
unless exists $updates{$_} } keys %vars_to_change;

Now we have all the data that should be written into the dynamic
config file
escape single quotes "'"
my $content = join "\n",
map { $updates{$_} =~ s/(['\\])/\\$1/g;
"$c{' . $_ . "} ="" . $updates{$_} . "';\n"
} keys %updates;

while creating a file

add '1;' to make require() happy
$content .= "\n1;";

keep the dummy result in $res so it won't complain
eval {my $res = $content};
if (se) {
print qg{Warning! Something went wrong with config file
generation!<p> The error was :</p>
<pre>$@</pre>};
return;

}
print $g->hr;

overwrite the dynamic config file
my $th = Apache::gensym();
open $th, ">$dynamic_config file.bak"
or die "Can't open $dynamic_config file.bak for writing: $!";
flock $fh, 2; # exclusive lock
seek $th, 0, 0; # rewind to the start
truncate $th, 0; # the file might shrink!
print $th $content;
close $fh;

OK, now we make a real file
rename "$dynamic_config file.bak", $dynamic_config file
or die "Failed to rename: $!";

rerun it to update variables in the current process! Note that

it won't update the variables in other processes. Special

code that watches the timestamps on the config file will do this
work for each process. Since the next invocation will update the

Loading and Reloading Modules | 275

Example 6-26. manage_conf.pl (continued)

configuration anyway, why do we need to load it here? The reason
is simple: we are going to fill the form's input fields with

the updated data.

do $dynamic_config file;

sub show_modification_form {
print $g->center($q->h3("Update Form"));

print $g->hr,
$9->p(qq{This form allows you to dynamically update the current
configuration. You don't need to restart the server in
order for changes to take an effect}

);

set the previous settings in the form's hidden fields, so we
know whether we have to do some changes or not
$q->param("prev_$ ", $c{$ }) for keys %vars_to change;

rows for the table, go into the form
my @configs = ();

prepare text field entries
push @configs,

map {
$9->td($9->b("$vars_to change{$ }:")),
$g->td(
$g->textfield(
-name => 9%,
-default => $c{$_},
-override => 1,
-size => 20,
-maxlength => 50,
)
)5

} qu(name release);

prepare multiline textarea entries
push @configs,
map {
$9->td($9->b("$vars_to change{$ }:")),
$g->td(
$g->textarea(
-name =%,
-default => $c{$_},
-override => 1,

-T0WS => 10,
-columns => 50,
-wrap => "HARD",
)

276 | Chapter6: Coding with mod_perl in Mind

Example 6-26. manage_conf.pl (continued)

)s

} qu(comments);

print $g->startform(POST => $g->url), "\n",
$q->center(
$q->table(map {$g->Tr($_), "\n",} @configs),
$g->submit('', 'Update!'), "\n",
map ({$q->hidden("prev_" . $_, $g->param("prev_".$)) . "\n" }
keys %vars to change), # hidden previous values

$9->br, "\n",
$g->endform, "\n",
$9->hr, "\n",

$9->end_html;

}
For example, on July 19 2002, Perl 5.8.0 was released. On that date, Jarkko Hietani-

emi exclaimed:
The pumpking is dead! Long live the pumpking!
Hugo van der Sanden is the new pumpking for Perl 5.10. Therefore, we run manage_

conf.pl and update the data. Once updated, the script overwrites the previous config.
pl file with the following content:

$c{release} = '5.10';

$c{name} = 'Hugo van der Sanden';
$c{comments} = 'Perl rules the world!';
1;

Instead of crafting your own code, you can use the CGI::QuickForm module from
CPAN to make the coding less tedious. See Example 6-27.

Example 6-27. manage_conf.pl

use strict;

use CGI gw(:standard :html3) ;
use CGI::QuickForm;

use 1lib qw(.);

use Book::MainConfig ();

*c = \%Book::MainConfig::c;

my $TITLE = 'Update Configuration';
show_form(
-HEADER => header . start html($TITLE) . h3($TITLE),
-ACCEPT => \&on_valid_form,
-FIELDS => [
{
-LABEL => "Patch Pumpkin's Name",

Loading and Reloading Modules | 277

Example 6-27. manage_conf.pl (continued)

-VALIDATE => sub { $_[0] =~ /~[\w\s\.]+$/; },
-default => $c{name},

b
{
-LABEL => "Current Perl Release",
-VALIDATE => sub { $_[0] =~ /™\d+\.[\d_]+$/; },
-default => $c{release},
b
{
-LABEL => "Release Comments",
-default => $c{comments},
b

)s

sub on_valid form {
save the form's values
}

That’s it. show_form() creates and displays a form with a submit button. When the
user submits, the values are checked. If all the fields are valid, on_valid form() is
called; otherwise, the form is re-presented with the errors highlighted.

Handling the “User Pressed Stop Button”
Case

When a user presses the Stop or Reload button, the current socket connection is bro-
ken (aborted). It would be nice if Apache could always immediately detect this event.
Unfortunately, there is no way to tell whether the connection is still valid unless an
attempt to read from or write to the connection is made.

Note that no detection technique will work if the connection to the backend mod_
perl server is coming from a frontend mod_proxy (as discussed in Chapter 12). This
is because mod_proxy doesn’t break the connection to the backend when the user
has aborted the connection.

If the reading of the request’s data is completed and the code does its processing
without writing anything back to the client, the broken connection won’t be noticed.
When an attempt is made to send at least one character to the client, the broken con-
nection will be noticed and the SIGPIPE signal (Broken Pipe) will be sent to the pro-
cess. The program can then halt its execution and perform all its cleanup
requirements.

Prior to Apache 1.3.6, SIGPIPE was handled by Apache. Currently, Apache does not
handle SIGPIPE, but mod_perl takes care of it.

278 | Chapter6: Coding with mod_perl in Mind

Under mod_perl, $r->print (or just print()) returns a true value on success and a
false value on failure. The latter usually happens when the connection is broken.

If you want behavior similar to the old SIGPIPE (as it was before Apache version 1.3.6),
add the following configuration directive:

PerlFixupHandler Apache::SIG

When Apache’s SIGPIPE handler is used, Perl may be left in the middle of its eval()
context, causing bizarre errors when subsequent requests are handled by that child.
When Apache::SIG is used, it installs a different SIGPIPE handler that rewinds the
context to make sure Perl is in a normal state before the new request is served, pre-
venting these bizarre errors. But in general, you don’t need to use Apache: :SIG.

If you use Apache: :SIG and you would like to log when a request was canceled by a
SIGPIPE in your Apache access_log, you must define a custom LogFormat in your
httpd.conf. For example:

PerlFixupHandler Apache::SIG

LogFormat "%h %1 %u %t \"%r\" %s %b %{SIGPIPE}e"
If the server has noticed that the request was canceled via a SIGPIPE, the log line will
end with 1. Otherwise, it will just be a dash. For example:

127.0.0.1 - - [09/3an/2001:10:27:15 +0100]

"GET /perl/stopping_detector.pl HTTP/1.0" 200 16 1

127.0.0.1 - - [09/Jan/2001:10:28:18 +0100]
"GET /perl/test.pl HTTP/1.0" 200 10 -

Detecting Aborted Connections

Now let’s use the knowledge we have acquired to trace the execution of the code and
watch all the events as they happen. Let’s take a simple Apache: :Registry script that
purposely hangs the server process, like the one in Example 6-28.

Example 6-28. stopping_detector.pl

my $r = shift;
$r->send_http_header('text/plain');

print "PID = $$\n";
$r->rflush;

while (1) {
sleep 1;

}

The script gets a request object $r by shift()ing it from the @ argument list (passed
by the handler() subroutine that was created on the fly by Apache: :Registry). Then
the script sends a Content-Type header telling the client that we are going to send a
plain-text response.

Handling the “User Pressed Stop Button” Case | 279

Next, the script prints out a single line telling us the ID of the process that handled
the request, which we need to know in order to run the tracing utility. Then we flush
Apache’s STDOUT buffer. If we don’t flush the buffer, we will never see this informa-
tion printed (our output is shorter than the buffer size used for print(), and the
script intentionally hangs, so the buffer won’t be auto-flushed).”

Then we enter an infinite while loop that does nothing but sleep(), emulating code
that doesn’t generate any output. For example, it might be a long-running mathe-
matical calculation, a database query, or a search for extraterrestrial life.

Running strace -p PID, where PID is the process ID as printed on the browser, we see
the following output printed every second:

rt_sigprocmask(SIG BLOCK, [CHLD], [], 8) =0

rt_sigaction(SIGCHLD, NULL, {SIG DFL}, 8) =0

rt_sigprocmask(SIG SETMASK, [], NULL, 8) =0

nanosleep({1, 0}, {1, 0}) =0

time([978969822]) = 978969822

time([978969822]) = 978969822
Alternatively, we can run the server in single-server mode. In single-server mode, we
don’t need to print the process ID, since the PID is the process of the single mod_
perl process that we’re running. When the process is started in the background, the
shell program usually prints the PID of the process, as shown here:

panic% httpd -X &

[1] 20107

Now we know what process we have to attach to with strace (or a similar utility):

panic% strace -p 20107

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) =0
rt_sigaction(SIGCHLD, NULL, {SIG DFL}, 8) = 0
rt_sigprocmask(SIG SETMASK, [], NULL, 8) =0

nanosleep({1, 0}, {1, 0}) =0
time([978969822]) = 978969822
time([978969822]) = 978969822

We see the same output as before.

Let’s leave strace running and press the Stop button. Did anything change? No, the
same system calls trace is printed every second, which means that Apache didn’t
detect the broken connection.

Now we are going to write \0 (NULL) characters to the client in an attempt to detect
the broken connection as soon as possible after the Stop button is pressed. Since
these are NULL characters, they won’t be seen in the output. Therefore, we modify the
loop code in the following way:

* Buffering is used to reduce the number of system calls (which do the actual writing) and therefore improve
performance. When the buffer (usually a few kilobytes in size) is getting full, it’s flushed and the data is writ-
ten.

280 | Chapter6: Coding with mod_perl in Mind

while (1) {
$r->print("\0");
last if $r->connection->aborted;
sleep 1;
}
We add a print() statement to print a NULL character, then we check whether the
connection was aborted, with the help of the $r->connection->aborted method. If the
connection is broken, we break out of the loop.

We run this script and run strace on it as before, but we see that it still doesn’t
work—the script doesn’t stop when the Stop button is pressed.

The problem is that we aren’t flushing the buffer. The NULL characters won’t be
printed until the buffer is full and is autoflushed. Since we want to try writing to the
connection pipe all the time, we add an $r->rflush() call. Example 6-29 is a new
version of the code.

Example 6-29. stopping_detector2.pl

my $r = shift;
$r->send_http header('text/plain');

print "PID = $$\n";
$r->rflush;

while (1) {
$r->print("\o");
$r->rflush;
last if $r->connection->aborted;
sleep 1;

}

After starting the strace utility on the running process and pressing the Stop button,
we see the following output:

rt_sigprocmask(SIG BLOCK, [CHLD], [], 8) =0
rt_sigaction(SIGCHLD, NULL, {SIG DFL}, 8) =0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) =0

nanosleep({1, 0}, {1, 0}) =0

time([978970895]) = 978970895

alarm(300) =0

alarm(0) = 300

write(3, "\o", 1) = -1 EPIPE (Broken pipe)
--- SIGPIPE (Broken pipe) ---

chdir("/usr/src/httpd_perl") =0

select(4, [3], NULL, NULL, {0, 0}) =1 (in [3], left {0, 0})
time(NULL) = 978970895

write(17, "127.0.0.1 - - [08/Jan/2001:19:21"..., 92) = 92

gettimeofday({978970895, 554755}, NULL) = 0

times({tms_utime=46, tms stime=5, tms cutime=0,
tms_cstime=0}) = 8425400

close(3) =0

Handling the “User Pressed Stop Button” Case | 281

rt_sigaction(SIGUSR1, {0x8099524, [], SA_INTERRUPT|0x4000000},
{SIG_IGN}, 8) = oalarm(0) =0
rt_sigprocmask(SIG BLOCK, NULL, [], 8) =0
rt_sigaction(SICALRM, {0x8098168, [], SA_RESTART|0x4000000},
{0x8098168, [], SA INTERRUPT|0x4000000}, 8) = 0
fcntl(18, F_SETLKW, {type=F_WRLCK, whence=SEEK_SET,
start=0, len=0}) = 0

Apache detects the broken pipe, as you can see from this snippet:

write(3, "\o", 1) = -1 EPIPE (Broken pipe)
--- SIGPIPE (Broken pipe) ---

Then it stops the script and does all the cleanup work, such as access logging:
write(17, "127.0.0.1 - - [08/Jan/2001:19:21"..., 92) = 92

where 17 is a file descriptor of the opened access_log file.

The Importance of Cleanup Code

Cleanup code is a critical issue with aborted scripts. For example, what happens to
locked resources, if there are any? Will they be freed or not? If not, scripts using these
resources and the same locking scheme might hang forever, waiting for these
resources to be freed.

And what happens if a file was opened and never closed? In some cases, this might
lead to a file-descriptor leakage. In the long run, many leaks of this kind might make
your system unusable: when all file descriptors are used, the system will be unable to
open new files.

First, let’s take a step back and recall what the problems and solutions for these
issues are under mod_cgi. Under mod_cgi, the resource-locking issue is a problem
only if you use external lock files and use them for lock indication, instead of using
flock (). If the script running under mod_cgi is aborted between the lock and the
unlock code, and you didn’t bother to write cleanup code to remove old, dead locks,
you’re in big trouble.

The solution is to place the cleanup code in an END block:

END {
code that ensures that locks are removed
}

When the script is aborted, Perl will run the END block while shutting down.

If you use flock(), things are much simpler, since all opened files will be closed
when the script exits. When the file is closed, the lock is removed as well—all the
locked resources are freed. There are systems where flock() is unavailable; on those
systems, you can use Perl’s emulation of this function.

With mod_perl, things can be more complex when you use global variables as file-
handles. Because processes don’t exit after processing a request, files won’t be closed

282 | (Chapter6: Coding with mod_perl in Mind

unless you explicitly close() them or reopen them with the open(') call, which first
closes the file. Let’s see what problems we might encounter and look at some possi-
ble solutions.

Critical section

First, we want to take a little detour to discuss the “critical section” issue. Let’s start
with a resource-locking scheme. A schematic representation of a proper locking tech-
nique is as follows:

1. Lock a resource
<critical section starts>

2. Do something with the resource
<critical section ends>

3. Unlock the resource

If the locking is exclusive, only one process can hold the resource at any given time,
which means that all the other processes will have to wait. The code between the
locking and unlocking functions cannot be interrupted and can therefore become a
service bottleneck. That’s why this code section is called critical. Its execution time
should be as short as possible.

Even if you use a shared locking scheme, in which many processes are allowed to
concurrently access the resource, it’s still important to keep the critical section as
short as possible, in case a process requires an exclusive lock.

Example 6-30 uses a shared lock but has a poorly designed critical section.

Example 6-30. critical_section_sh.pl

use Fentl qw(:flock);
use Symbol;

my $th = gensym;
open $th, "/tmp/foo" or die $!;

start critical section
flock $th, LOCK_SH; # shared lock, appropriate for reading
seek $fh, 0, 0;
my @lines = <$fh>;
for (@lines) {
print if /foo/;
}
close $fh; # close unlocks the file
end critical section

The code opens the file for reading, locks and rewinds it to the beginning, reads all
the lines from the file, and prints out the lines that contain the string “foo”.

Handling the “User Pressed Stop Button” Case | 283

The gensym() function imported by the Symbol module creates an anonymous glob
data structure and returns a reference to it. Such a glob reference can be used as a file
or directory handle. Therefore, it allows lexically scoped variables to be used as file-

handles.

Fentl imports file-locking symbols, such as LOCK_SH, LOCK_EX, and others with the
:flock group tag, into the script’s namespace. Refer to the Fentl manpage for
more information about these symbols.

If the file being read is big, it will take a relatively long time for this code to complete
printing out the lines. During this time, the file remains open and locked with a
shared lock. While other processes may access this file for reading, any process that
wants to modify the file (which requires an exclusive lock) will be blocked waiting
for this section to complete.

We can optimize the critical section as follows. Once the file has been read, we have
all the information we need from it. To make the example simpler, we’ve chosen to
just print out the matching lines. In reality, the code might be much longer.

We don’t need the file to be open while the loop executes, because we don’t access it
inside the loop. Closing the file before we start the loop will allow other processes to
obtain exclusive access to the file if they need it, instead of being blocked for no reason.

Example 6-31 is an improved version of the previous example, in which we only read
the contents of the file during the critical section and process it afterward, without
creating a possible bottleneck.

Example 6-31. critical_section_sh2.pl

use Fentl qw(:flock);
use Symbol;

my $th = gensym;
open $th, "/tmp/foo" or die $!;

start critical section

flock $fth, LOCK SH;

seek $th, 0, 0;

my @lines = <$fh>;

close $fh; # close unlocks the file
end critical section

for (@lines) {
print if /foo/;
}

Example 6-32 is a similar example that uses an exclusive lock. The script reads in a
file and writes it back, prepending a number of new text lines to the head of the file.

284 | Chapter6: Coding with mod_perl in Mind

Example 6-32. critical_section_ex.pl

use Fentl qw(:flock);
use Symbol;

my $th = gensym;
open $th, "+>>/tmp/foo" or die $!;

start critical section

flock $fh, LOCK EX;

seek $th, 0, 0;

my @add lines =
(
qq{Complete documentation for Perl, including FAQ lists,\n},
qq{should be found on this system using 'man perl' or\n},
qq{ 'perldoc perl'. If you have access to the Internet, point\n},
qq{your browser at http://www.perl.com/, the Perl Home Page.\n},

>

my @lines = (@add lines, <$fth>);
seek $fth, 0, 0;

truncate $fth, 0;

print $fh @lines;

close $fh; # close unlocks the file
end critical section

Since we want to read the file, modify it, and write it back without anyone else
changing it in between, we open it for reading and writing with the help of "+>>" and
lock it with an exclusive lock. You cannot safely accomplish this task by opening the
file first for reading and then reopening it for writing, since another process might
change the file between the two events. (You could get away with "+<" as well; please
refer to the perlfunc manpage for more information about the open() function.)

Next, the code prepares the lines of text it wants to prepend to the head of the file
and assigns them and the content of the file to the @lines array. Now we have our
data ready to be written back to the file, so we seek() to the start of the file and
truncate() it to zero size. Truncating is necessary when there’s a chance the file
might shrink. In our example, the file always grows, so in this case there is actually
no need to truncate it; however, it’s good practice to always use truncate(), as you
never know what changes your code might undergo in the future, and truncate()
doesn’t significantly affect performance.

Finally, we write the data back to the file and close it, which unlocks it as well.

Did you notice that we created the text lines to be prepended as close to the place of
usage as possible? This complies with good “locality of code” style, but it makes the
critical section longer. In cases like this, you should sacrifice style in order to make
the critical section as short as possible. An improved version of this script with a
shorter critical section is shown in Example 6-33.

Handling the “User Pressed Stop Button” Case | 285

Example 6-33. critical_section_ex2.pl

use Fentl qw(:flock);
use Symbol;

my @lines =
(
qq{Complete documentation for Perl, including FAQ lists,\n},
qq{should be found on this system using 'man perl' or\n},
qq{ 'perldoc perl'. If you have access to the Internet, point\n},
qq{your browser at http://www.perl.com/, the Perl Home Page.\n},

>

my $th = gensym;
open $th, "+>>/tmp/foo" or die $!;

start critical section
flock $fh, LOCK_EX;

seek $fth, 0, 0;

push @lines, <$fh>;

seek $fth, 0, 0;

truncate $fth, 0;

print $fh @lines;

close $fh; # close unlocks the file
end critical section

There are two important differences. First, we prepared the text lines to be
prepended before the file is locked. Second, rather than creating a new array and
copying lines from one array to another, we appended the file directly to the @1ines
array.

Safe resource locking and cleanup code

Now let’s get back to this section’s main issue, safe resource locking. If you don’t
make a habit of closing all files that you open, you may encounter many problems
(unless you use the Apache::PerlRun handler, which does the cleanup for you). An
open file that isn’t closed can cause file-descriptor leakage. Since the number of file
descriptors available is finite, at some point you will run out of them and your ser-
vice will fail. This will happen quite fast on a heavily used server.

You can use system utilities to observe the opened and locked files, as well as the
processes that have opened (and locked) the files. On FreeBSD, use the fstat utility.
On many other Unix flavors, use Isof. On systems with a /proc filesystem, you can see
the opened file descriptors under /proc/PID/fd/, where PID is the actual process ID.

However, file-descriptor leakage is nothing compared to the trouble you will give
yourself if the code terminates and the file remains locked. Any other process
requesting a lock on the same file (or resource) will wait indefinitely for it to become
unlocked. Since this will not happen until the server reboots, all processes trying to
use this resource will hang.

286 | Chapter6: Coding with mod_perl in Mind

Example 6-34 is an example of such a terrible mistake.

Example 6-34. flock.pl

use Fentl gw(:flock);

open IN, "+>>filename" or die "$!";

flock IN, LOCK_EX;

do something

quit without closing and unlocking the file

Is this safe code? No—we forgot to close the file. So let’s add the close(), as in
Example 6-35.

Example 6-35. flock2.pl

use Fentl qu(:flock);

open IN, "+>>filename" or die "$!";
flock IN, LOCK_EX;

do something

close IN;

[s it safe code now? Unfortunately, it is not. If the user aborts the request (for exam-
ple, by pressing the browser’s Stop or Reload buttons) during the critical section, the
script will be aborted before it has had a chance to close() the file, which is just as
bad as if we forgot to close it.

In fact, if the same process runs the same code again, an open() call will close() the
file first, which will unlock the resource. This is because IN is a global variable. But
it’s quite possible that the process that created the lock will not serve the same
request for a while, since it might be busy serving other requests. During that time,
the file will be locked for other processes, making them hang. So relying on the same
process to reopen the file is a bad idea.

This problem happens only if you use global variables as file handles. Example 6-36
has the same problem.

Example 6-36. flock3.pl

use Fentl qu(:flock);

use Symbol ();

use vars qw($fh);

$th = Symbol::gensym();

open $th, "+>>filename" or die "$!";
flock $fh, LOCK EX;

do something

close $fh;

$fh is still a global variable, and therefore the code using it suffers from the same
problem.

The simplest solution to this problem is to always use lexically scoped variables (cre-
ated with my()). The lexically scoped variable will always go out of scope (assuming

Handling the “User Pressed Stop Button” Case | 287

that it’s not used in a closure, as explained in the beginning of this chapter), whether
the script gets aborted before close() is called or you simply forgot to close() the
file. Therefore, if the file was locked, it will be closed and unlocked. Example 6-37 is
a good version of the code.

Example 6-37. flock4.pl

use Fentl qw(:flock);

use Symbol ();

my $fh = Symbol::gensym();

open $th, "+>>filename" or die "$!";
flock $fh, LOCK_EX;

do something

close $fh;

If you use this approach, please don’t conclude that you don’t have to close files any-
more because they are automatically closed for you. Not closing files is bad style and

should be avoided.

Note also that Perl 5.6 provides a Symbol.pm-like functionality as a built-in feature, so
you can write:

open my $th, ">/tmp/foo" or die $!;

and $fh will be automatically vivified as a valid filehandle. You don’t need to use
Symbol::gensym and Apache::gensym anymore, if backward compatibility is not a
requirement.

You can also use I0: :* modules, such as I0: :File or I0::Dir. These are much bigger
than the Symbol module (as a matter of fact, these modules use the Symbol module
themselves) and are worth using for files or directories only if you are already using
them for the other features they provide. Here is an example of their usage:

use I0::File;

use I0::Dir;

my $fh = I0::File->new(">filename");

my $dh = I0::Dir->new("dirname");
Alternatively, there are also the lighter FileHandle and DirHandle modules.

If you still have to use global filehandles, there are a few approaches you can take to
clean up in the case of abnormal script termination.

If you are running under Apache::Registry and friends, the END block will perform
the cleanup work for you. You can use END in the same way for scripts running under
mod_cgi, or in plain Perl scripts. Just add the cleanup code to this block, and you are
safe.

For example, if you work with DBM files, it’s important to flush the DBM buffers by
calling a sync() method:

END {
make sure that the DB is flushed

288 | Chapter6: Coding with mod_perl in Mind

$dbh->sync();
}
Under mod_perl, the above code will work only for Apache: :Registry and Apache::
Per1Run scripts. Otherwise, execution of the END block is postponed until the process
terminates. If you write a handler in the mod_perl API, use the register cleanup()
method instead. It accepts a reference to a subroutine as an argument. You can
rewrite the DBM synchronization code in this way:

$r->register cleanup(sub { $dbh->sync() });
This will work under Apache: :Registry as well.

Even better would be to check whether the client connection has been aborted. Oth-
erwise, the cleanup code will always be executed, and for normally terminated
scripts, this may not be what you want. To perform this check, use:

$r->register cleanup(
make sure that the DB is flushed
sub {
$dbh->sync() if Apache->request->connection->aborted();
}

)s
Or, if using an END block, use:

END {
make sure that the DB is flushed
$dbh->sync() if Apache->request->connection->aborted();

Note that if you use register cleanup(), it should be called at the beginning of the
script or as soon as the variables you want to use in this code become available. If
you use it at the end of the script, and the script happens to be aborted before this
code is reached, no cleanup will be performed.

For example, CGI.pm registers a cleanup subroutine in its new() method:

sub new {
code snipped
if ($MOD_PERL) {
Apache->request->register cleanup(\8CGI:: reset globals);
undef $NPH;
}

more code snipped

}

Another way to register a section of cleanup code for mod_perl API handlers is to use
PerlCleanupHandler in the configuration file:

<Location /foo>
SetHandler perl-script
PerlHandler Apache: :MyModule
PerlCleanupHandler Apache::MyModule::cleanup()
Options ExecCGI

</Location>

Handling the “User Pressed Stop Button” Case | 289

Apache: :MyModule: :cleanup performs the cleanup.

Handling Server Timeout Cases and Working
with $SIG{ALRM}

Similar to the case where a user aborts the script execution by pressing the Stop but-
ton, the browser itself might abort the script if it hasn’t returned any output after a
certain timeout period (usually a few minutes).

Sometimes scripts perform very long operations that might take longer than the cli-
ent’s timeout.

This can happen when performing full searches of a large database with no full
search support. Another example is a script interacting with external applications
whose prompt reponse time isn’t guaranteed. Consider a script that retrieves a page
from another site and does some processing on it before it gets presented to the user.
Obviously, nothing guarantees that the page will be retrieved fast, if at all.

In this situation, use $SIG{ALRM} to prevent the timeouts:

my $timeout = 10; # seconds
eval {
local $SIG{ALRM} =
sub { die "Sorry, timed out. Please try again\n" };
alarm $timeout;
some operation that might take a long time to complete
alarm 0;
1
die 3@ if $@;
In this code, we run the operation that might take a long time to complete inside an
eval block. First we initialize a localized ALRM signal handler, which resides inside the
special %SIG hash. If this handler is triggered, it will call die(), and the eval block
will be aborted. You can then do what you want with it—in our example, we chose
to abort the execution of the script. In most cases, you will probably want to report
to the user that the operation has timed out.

The actual operation is placed between two alarm() calls. The first call starts the
clock, and the second cancels it. The clock is running for 10 seconds in our example.
If the second alarm() call doesn’t occur within 10 seconds, the SIGALRM signal is sent
and the handler stored in $SIG{ALRM} is called. In our case, this will abort the eval
block.

If the operation between the two alarm()s completes in under 10 seconds, the alarm
clock is stopped and the eval block returns successfully, without triggering the ALRM
handler.

290 | Chapter6: Coding with mod_perl in Mind

Notice that only one timer can be used at a given time. alarm()’s returned value is
the amount of time remaining in the previous timer. So you can actually roughly
measure the execution time as a side effect.

It is usually a mistake to intermix alarm() and sleep() calls. sleep() may be inter-
nally implemented in your system with alarm(), which will break your original
alarm() settings, since every new alarm() call cancels the previous one.

Finally, the actual time resolution may be imprecise, with the timeout period being
accurate to plus or minus one second. You may end up with a timeout that varies
between 9 and 11 seconds. For granularity finer than one second, you can use Perl’s
four-argument version of select(), leaving the first three arguments undefined.
Other techniques exist, but they will not help with the task in question, in which we
use alarm() to implement timeouts.

Generating Correct HTTP Headers

An HTTP response header consists of at least two fields: HTTP response and MIME-
type header Content-Type:

HTTP/1.0 200 OK

Content-Type: text/plain
After adding a newline, you can start printing the content. A more complete response
includes the date timestamp and server type. For example:

HTTP/1.0 200 OK

Date: Tue, 10 Apr 2001 03:01:36 GMT

Server: Apache/1.3.19 (Unix) mod_perl/1.25

Content-Type: text/plain
To notify clients that the server is configured with KeepAlive Off, clients must be
told that the connection will be closed after the content has been delivered:

Connection: close

There can be other headers as well, such as caching control headers and others speci-
fied by the HTTP protocol. You can code the response header with a single print()
statement:
print qq{HTTP/1.1 200 OK

Date: Tue, 10 Apr 2001 03:01:36 GMT

Server: Apache/1.3.19 (Unix) mod_perl/1.25

Connection: close

Content-Type: text/plain

b
or with a “here”-style print():

print <<'EOT';
HTTP/1.1 200 OK
Date: Tue, 10 Apr 2001 03:01:36 GMT

Generating Correct HTTP Headers | 291

Server: Apache/1.3.19 (Unix) mod_perl/1.25
Connection: close
Content-type: text/plain

EOT

Don’t forget to include two newlines at the end of the HTTP header. With the help

of Apache::Util::ht time(), you can get the right timestamp string for the Date:
field.

If you want to send non-default headers, use the header out() method. For example:

$r->header out("X-Server" => "Apache Next Generation 10.0");

$r->header_out("Date" => "Tue, 10 Apr 2001 03:01:36 GMT");
When the headers setting is completed, the send_http_header() method will flush
the headers and add a newline to designate the start of the content.

$r->send_http_header;

Some headers have special aliases. For example:
$r->content_type('text/plain');

is the same as:
$r->header out("Content-Type" => "text/plain");

but additionally sets some internal flags used by Apache. Whenever special-purpose
methods are available, you should use those instead of setting the header directly.

A typical handler looks like this:

use Apache::Constants qw(0K);

$r->content_type('text/plain');

$r->send_http header;

return OK if $r->header only;
To be compliant with the HTTP protocol, if the client issues an HTTP HEAD request
rather than the usual GET, we should send only the HTTP header, the document
body. When Apache receives a HEAD request, header only() returns true. Therefore,
in our example the handler returns immediately after sending the headers.

In some cases, you can skip the explicit content-type setting if Apache figures out the
right MIME type based on the request. For example, if the request is for an HTML
file, the default text/html will be used as the content type of the response. Apache
looks up the MIME type in the mime.types file. You can always override the default
content type.

The situation is a little bit different with Apache: :Registry and similar handlers. Con-
sider a basic CGI script:

print "Content-type: text/plain\n\n";
print "Hello world";

292 | Chapter6: Coding with mod_perl in Mind

By default, this won’t work, because it looks like normal text, and no HTTP headers
are sent. You may wish to change this by adding:

PerlSendHeader On
in the Apache: :Registry <Location> section of your configuration. Now the response
line and common headers will be sent in the same way they are by mod_cgi. Just as

with mod_cgi, even if you set PerlSendHeader On, the script still needs to send the
MIME type and a terminating double newline:

print "Content-type: text/html\n\n";

The PerlSendHeader On directive tells mod_perl to intercept anything that looks like a
header line (such as Content-Type: text/plain) and automatically turn it into a cor-
rectly formatted HTTP header, much like CGI scripts running under mod_cgi. This
feature allows you to keep your CGI scripts unmodified.

You can use $ENV{PERL_SEND HEADER} to find out whether PerlSendHeader is On or Off.

if ($ENV{PERL_SEND HEADER}) {
print "Content-type: text/html\n\n";

}

else {
my $r = Apache->request;
$r->content_type('text/html");
$r->send_http_header;

}

Note that you can always use the code in the else part of the above example,
whether the PerlSendHeader directive is On or Off.

If you use CGI.pm’s header() function to generate HTTP headers, you do not need to
activate this directive because CGI.pm detects mod_perl and calls send_http_header()
for you.

There is no free lunch—you get the mod_cgi behavior at the expense of the small but
finite overhead of parsing the text that is sent. Note that mod_perl makes the
assumption that individual headers are not split across print() statements.

The Apache: :print() routine must gather up the headers that your script outputs in
order to pass them to $r->send http header. This happens in src/modules/perl/
Apache.xs (print()) and Apache/Apache.pm (send_cgi header()). There is a shortcut
in there—namely, the assumption that each print() statement contains one or more
complete headers. If, for example, you generate a Set-Cookie header using multiple
print() statements, like this:

print "Content-type: text/plain\n";
print "Set-Cookie: iscookietext\; ";

print "expires=Wednesday, 09-Nov-1999 00:00:00 GMT\; ";
print "path=\/\; ";

print "domain=\.mmyserver.com\; ";
print "\n\n";

print "Hello";

Generating Correct HTTP Headers | 293

the generated Set-Cookie header is split over a number of print() statements and
gets lost. The above example won’t work! Try this instead:

my $cookie = "Set-Cookie: iscookietext\; ";
$cookie .= "expires=Wednesday, 09-Nov-1999 00:00:00 CMT\; ";
$cookie .= "path=\/\; ";
$cookie .= "domain=\.mmyserver.com\; "“;
print "Content-type: text/plain\n”,
print "$cookie\n\n";
print "Hello";
Using special-purpose cookie generator modules (for example, Apache::Cookie or
CGI::Cookie) is an even cleaner solution.

Sometimes when you call a script you see an ugly “Content-Type: text/html” dis-
played at the top of the page, and often the HTML content isn’t rendered correctly
by the browser. As you have seen above, this generally happens when your code
sends the headers twice.

If you have a complicated application in which the header might be sent from many
different places depending on the code logic, you might want to write a special sub-
routine that sends a header and keeps track of whether the header has already been
sent. You can use a global variable to flag that the header has already been sent, as
shown in Example 6-38.

Example 6-38. send_header.pl

use strict;
use vars gqw($header printed);
$header printed = 0;

print_header("text/plain");
print "It worked!\n";
print_header("text/plain");

sub print_header {
return if $header printed;

my $type = shift || "text/html";
$header printed = 1;
my $r = Apache->request;
$r->content_type($type);
$r->send_http_header;

}

15

$header printed serves as a Boolean variable, specifying whether the header was sent
or not. It gets initialized to false (0) at the beginning of each code invocation. Note
that the second invocation of print_header() within the same request will immedi-
ately return, since $header printed will become true after print header() is exe-
cuted for the first time in the same request.

294 | Chapter6: Coding with mod_perl in Mind

You can continue to improve this subroutine even further to handle additional head-
ers, such as cookies.

Method Handlers: The Browse and See,
Browse and View Example

Let’s look at an example of the method-handler concepts presented in Chapter 4.
Suppose you need to implement a handler that allows browsing the files in the docu-
ment root and beneath. Directories should be browsable (so you can move up and
down the directory tree), but files should not be viewable (so you can see the avail-
able files, but you cannot click to view them).

So let’s write a simple file browser. We know what customers are like, so we suspect
that the customer will ask for similar customized modules pretty soon. To avoid hav-
ing to duplicate our work later, we decide to start writing a base class whose meth-
ods can easily be overridden as needed. Our base class is called Apache: :BrowseSee.

We start the class by declaring the package and using the strict pragma:

package Apache: :BrowseSee;

use strict;
Next, we import common constants (e.g., 0K, NOT_FOUND, etc.), load the File::Spec::
Functions and File::Basename modules, and import a few path-manipulation func-
tions that we are going to use:

use Apache::Constants qw(:common);

use File::Spec::Functions gqw(catdir canonpath curdir updir);
use File::Basename 'dirname’;

Now let’s look at the functions. We start with the simple constructor:
sub new { bless {}, shift;}
The real entry point, the handler, is prototyped as ($$). The handler starts by instan-

tiating its object, if it hasn’t already been done, and storing the $r object, so we don’t
need to pass it to the functions as an argument:
sub handler ($$) {
my($self, $r) = @ ;
$self = $self->new unless ref $self;
$self->{r} = $r;

Next we retrieve the path_info element of the request record:
$self->{dir} = $r->path_info || '/';

For example, if the request was /browse/foo/bar, where /browse is the location of the
handler, the path_info element will be /foo/bar. The default value / is used when the
path is not specified.

Method Handlers: The Browse and See, Browse and View Example | 295

Then we reset the entries for dirs and files:

$self->{dirs} = {};

$self->{files} = {};
This is needed because it’s possible that the $self object is created outside the han-
dler (e.g., in the startup file) and may persist between requests.

Now an attempt to fetch the contents of the directory is made:

eval { $self->fetch() };

return NOT_FOUND if $@;
If the fetch() method dies, the error message is assigned to $@ and we return NOT_
FOUND. You may choose to approach it differently and return an error message
explaining what has happened. You may also want to log the event before returning:

warn($@), return NOT_FOUND if $@;

Normally this shouldn’t happen, unless a user messes with the arguments (some-
thing you should always be on the lookout for, because they will do it).

When the fetch() function has completed successfully, all that’s left is to send the
HTTP header and start of the HTML via the head() method, render the response,
send the end of the HTML via tail(),” and finally to return the 0K constant to tell
the server that the request has been fully answered:

$self->head;

$self->render;
$self->tail;

return OK;

}

The response is generated by three functions. The head() method is a very simple
one—it sends the HTTP header text/html and prints an HTML preamble using the
current directory name as a title:

sub head {

my $self = shift;

$self->{r}->send http header("text/html");

print "<html><head><title>Dir: $self->{dir}</title><head><body>";
}

The tail() method finishes the HTML document:

sub tail {
my $self = shift;
print "</body></html>";

* This could perhaps be replaced by a templating system. See Appendix D for more information about the
Template Toolkit.

296 | Chapter6: Coding with mod_perl in Mind

The fetch() method reads the contents of the directory stored in the object’s dir
attribute (relative to the document root) and then sorts the contents into two groups,
directories and files:

sub fetch {
my $self = shift;
my $doc_root = Apache->document root;
my $base dir = canonpath(catdir($doc_root, $self->{dir}));

my $base entry = $self->{dir} eq '/' ? "' : $self->{dir};
my $dh = Apache::gensym();
opendir $dh, $base dir or die "Cannot open $base dir: $!";
for (readdir $dh) {

next if $_ eq curdir(); # usually '.'

my $full dir = catdir $base dir, $;
my $entry = "$base entry/$_";
if (-d $full dir) {
if ($_equpdir()) { # '.."
$entry = dirname $self->{dir};
next if catdir($base dir, $entry) eq $doc_root;

}

$self->{dirs}{$_} = $entry;
}
else {

$self->{files}{$_} = $entry;
}

}
closedir $dh;

}
By using canonpath(), we make sure that nobody messes with the path_info ele-
ment, by eliminating successive slashes and "/."s on Unix and taking appropriate
actions on other operating systems. It’s important to use File::Spec and other cross-
platform functions when developing applications.

While looping through the directory entries, we skip over the current directory entry
using the curdir() function imported from File::Spec::Functions (which is equiva-
lent to . on Unix) and handle the parent directory entry specially by matching the
updir () function (which is equivalent to .. on Unix). The function dirname() gives us
the parent directory, and afterward we check that this directory is different from the
document root. If it’s the same, we skip this entry.

Note that since we use the path_info element to pass the directory relative to the
document root, we rely on Apache to handle the case when users try to mess with
the URL and add .. to reach files they aren’t supposed to reach.

Finally, let’s look at the render() method:

sub render {
my $self = shift;
print "<p>Current Directory: <i>$self->{dir}</i>
";

Method Handlers: The Browse and See, Browse and View Example | 297

my $location = $self->{r}->location;
print qq{{dirs}{$ }">$
}
for sort keys %{ $self->{dirs} || {} };
print qq{$_
}
for sort keys %{ $self->{files} || {} };
}

The render() method actually takes the files and directories prepared in the fetch()
method and displays them to the user. First the name of the current directory is dis-
played, followed by the directories and finally the files. Since the module should
allow browsing of directories, we hyperlink them. The files aren’t linked, since we
are in “see but don’t touch” mode.”

Finally, we finish the package with 1; to make sure that the module will be success-
fully loaded. The __END__ token allows us to put various notes and POD documenta-
tion after the program, where Perl won’t complain about them.
1
END

Example 6-39 shows how the whole package looks.

Example 6-39. Apache/BrowseSee.pm

package Apache: :BrowseSee;
use strict;

use Apache::Constants qw(:common);
use File::Spec::Functions gqw(catdir canonpath curdir updir);
use File::Basename 'dirname’;

sub new { bless {}, shift;}

sub handler ($$) {
my($self, $r) = @ ;
$self = $self->new unless ref $self;

$self->{r} = $r;
$self->{dir} = $r->path_info || '/';
$self->{dirs} = {};
$self->{files} = {};

eval { $self->fetch() };
return NOT_FOUND if $@;

$self->head;
$self->render;
$self->tail;

* In your real code you should also escape HTML- and URI-unsafe characters in the filenames (e.g., <, >, &,
", ', etc.) by using the Apache: :Util::escape_html and Apache: :Util: :escape_uri functions.

298 | Chapter6: Coding with mod_perl in Mind

Example 6-39. Apache/BrowseSee.pm (continued)

return OK;
}
sub head {
my $self = shift;
$self->{r}->send http header("text/html");
print "<html><head><title>Dir: $self->{dir}</title><head><body>";
}
sub tail {
my $self = shift;
print "</body></html>";
}
sub fetch {
my $self = shift;
my $doc_root = Apache->document_root;
my $base_dir = canonpath(catdir($doc_root, $self->{dir}));
my $base entry = $self->{dir} eq '/' ? "' : $self->{dir};
my $dh = Apache::gensym();
opendir $dh, $base dir or die "Cannot open $base dir: $!";
for (readdir $dh) {
next if $ eq curdir();
my $full_dir = catdir $base dir, $_;
my $entry = "$base_entry/$_";
if (-d $full dir) {
if (5_ eq updir()) {
$entry = dirname $self->{dir};
next if catdir($base dir, $entry) eq $doc_root;
}
$self->{dirs}{$_} = $entry;
}
else {
$self->{files}{$_} = $entry;
}
}
closedir $dh;
}

sub render {
my $self = shift;
print "Current Directory: <i>$self->{dir}</i>
";

my $location = $self->{r}->location;

print qq{{dirs}{$ }">$
}
for sort keys %{ $self->{dirs} || {} };

print qq{$_
}
for sort keys %{ $self->{files} || {} };

Method Handlers: The Browse and See, Browse and View Example

299

Example 6-39. Apache/BrowseSee.pm (continued)

1;
END

This module should be saved as Apache/BrowseSee.pm and placed into one of the
directories in @INC. For example, if /home/httpd/perl is in your @INC, you can save it in
/home/httpd/perl/Apache/BrowseSee.pm.

To configure this module, we just add the following snippet to httpd.conf:

PerlModule Apache::BrowseSee
<Location /browse>

SetHandler perl-script

PerlHandler Apache::BrowseSee->handler
</Location>

Users accessing the server from /browse can now browse the contents of your server
from the document root and beneath but cannot view the contents of the files (see
Figure 6-2).

L1006

P

N
» D |

Current Directory: fsud

.| secref_files
index.html
secret_ahtml
secret_b.html

Figure 6-2. The files can be browsed but not viewed

Now let’s say that as soon as we get the module up and running, the client comes
back and tells us he would like us to implement a very similar application, except
that files should now be viewable (clickable). This is because later he wants to allow
only authorized users to read the files while letting everybody see what he has to
offer.

We knew that was coming, remember? Since we are lazy and it’s not exciting to write
the same code again and again, we will do the minimum amount of work while still
keeping the client happy. This time we are going to implement the Apache::
BrowseRead module:

package Apache: :BrowseRead;

use strict;
use base qw(Apache::BrowseSee);

300 | Chapter6: Codingwithmod_perl in Mind

We place the new module into Apache/BrowseRead.pm, declare a new package, and
tell Perl that this package inherits from Apache: :BrowseSee using the base pragma.
The last line is roughly equivalent to:

BEGIN {

require Apache::BrowseSee;

@Apache: :BrowseRead: :ISA = qw(Apache: :BrowseSee);
}

Since this class is going to do the same job as Apache: :BrowseSee, apart from render-
ing the file listings differently, all we have to do is override the render() method:

sub render {
my $self = shift;
print "<p>Current Directory: <i>$self->{dir}</i>
";

my $location = $self->{r}->location;
print qqg{{dirs}{$ }">$
}
for sort keys %{ $self->{dirs} || {} };
print qq{{files}{$_}">$
}
for sort keys %{ $self->{files} || {} };
}

As you can see, the only difference here is that we link to the real files now.

We complete the package as usual with 1; and __END__

1;
END_

Example 6-40 shows the whole package.

Example 6-40. Apache/BrowseRead.pm

package Apache: :BrowseRead;
use strict;
use base qw(Apache::BrowseSee);

sub render {
my $self = shift;
print "<p>Current Directory: <i>$self->{dir}</i>
";

my $location = $self->{r}->location;

print qg{{dirs}{$ }">$
}
for sort keys %{ $self->{dirs} || {} };

print qq{{files}{$ }">$
}
for sort keys %{ $self->{files} || {} };

Method Handlers: The Browse and See, Browse and View Example | 301

Finally, we should add a new configuration section in httpd.conf:

PerlModule Apache::BrowseRead
<Location /read>

SetHandler perl-script

PerlHandler Apache::BrowseRead->handler
</Location>

Now, when accessing files through /read, we can browse and view the contents of the
files (see Figure 6-3). Once we add some authentication/authorization methods, we
will have a server where everybody can browse, but only privileged users can read.

= Dir: fsuit - Mozilla 2006

f = :
| @D e @ Q | | % httpeinocainost:a000ieatsuit =] dffga .Zl'HH
FY L
» I |

Current Directorsy. fsué

.| secret_files
index.html
gecret_ahtml
gecret_b.html

Figure 6-3. The files can be browsed and read

You might be wondering why you would write a special module to do something
Apache itself can already do for you. First, this was an example on using method
handlers, so we tried to keep it simple while showing some real code. Second, this
example can easily be adapted and extended—for example, it can handle virtual files
that don’t exist on the filesystem but rather are generated on the fly and/or fetched
from the database, and it can easily be changed to do whatever you (or your client)
want to do, instead of what Apache allows.

References

* “Just the FAQs: Coping with Scoping,” an article by Mark-Jason Dominus about
how Perl handles variables and namespaces, and the difference between use
vars() and my(): http://www.plover.com/~mjd/perl/FAQs/Namespaces.html.

* It’s important to know how to perform exception handling in Perl code. Excep-
tion handling is a general Perl technique; it’s not mod_perl-specific. Further
information is available in the documentation for the following modules:

— Error.pm, by Graham Barr.

— Exception::Class and Devel: :StackTrace, by Dave Rolsky.

302 | Chapter6: Codingwith mod_perl in Mind

— Try.pm, by Tony Olekshy, available at http:/'www.avrasoft.com/perl6/try6-
ref5.txt.

— There is also a great deal of information concerning error handling in the
mod_perl online documentation (e.g., http://perl.apache.org/docs/general/
perl_reference/perl_reference.html).

* Perl Module Mechanics: http://world.std.com/~swmcd/steven/perl/module_
mechanics.html.

This page describes the mechanics of creating, compiling, releasing, and main-

taining Perl modules, which any mod_perl developer planning on sharing code

with others will find useful.

References | 303

