
A Yacc Tutorial

Victor Eijkhout

July 2004

1 Introduction

The unix utility yacc(Yet Another Compiler Compiler) parses a stream of token, typically
generated bylex, according to a user-specified grammar.

2 Structure of a yaccfile

A yaccfile looks much like alexfile:

...definitions...
%%

...rules...
%%

...code...

In the example you just saw, all three sections are present:

definitions All code between%{ and%} is copied to the beginning of the resulting C file.
rules A number of combinations of pattern and action: if the action is more than a single

command it needs to be in braces.
code This can be very elaborate, but the main ingredient is the call toyylex , the lexical

analyser. If the code segment is left out, a default main is used which only calls
yylex .

3 Definitions section

There are three things that can go in the definitions section:

C code Any code between%{ and%} is copied to the C file. This is typically used for
defining file variables, and for prototypes of routines that are defined in the code
segment.

definitions The definitions section of alexfile was concerned with characters; inyaccthis
is tokens. These token definitions are written to a.h file whenyacccompiles this
file.

associativity rules These handle associativity and priority of operators.

1

4 Lex Yacc interaction

Conceptually,lex parses a file of characters and outputs a stream of tokens;yaccaccepts a
stream of tokens and parses it, performing actions as appropriate. In practice, they are more
tightly coupled.

If your lex program is supplying a tokenizer, theyacc program will repeatedly call the
yylex routine. Thelex rules will probably function by callingreturn everytime they
have parsed a token. We will now see the waylex returns information in such a way that
yacccan use it for parsing.

4.1 The shared header file of return codes

If lex is to return tokens thatyaccwill process, they have to agree on what tokens there are.
This is done as follows.

• Theyaccfile will have token definitions
%token NUMBER
in the definitions section.

• When theyaccfile is translated withyacc -d , a header filey.tab.h is created
that has definitions like
#define NUMBER 258
This file can then be included in both thelexandyaccprogram.

• The lex file can then callreturn NUMBER , and theyaccprogram can match on
this token.

The return codes that are defined from%TOKENdefinitions typically start at around 258,
so that single characters can simply be returned as their integer value:

/* in the lex program */
[0-9]+ {return NUMBER}
[-+*/] {return *yytext}

/* in the yacc program */
sum : TERMS ’+’ TERM

See example 7.1 for a worked out code.

4.2 Return values

In the above, very sketchy example,lexonly returned the information that there was a num-
ber, not the actual number. For this we need a further mechanism. In addition to specifying
the return code, thelexparse can return a symbol that is put on top of the stack, so thatyacc
can access it. This symbol is returned in the variableyylval . By default, this is defined
as anint , so thelexprogram would have

extern int llval;
%%
[0-9]+ {llval=atoi(yytext); return NUMBER;}

If more than just integers need to be returned, the specifications in theyacccode become
more complicated. Suppose we want to return double values, and integer indices in a table.
The following three actions are needed.

1. The possible return values need to be stated:
%union {int ival; double dval;}

2. These types need to be connected to the possible return tokens:

2

%token <ival> INDEX
%token <dval> NUMBER

3. The types of non-terminals need to be given:
%type <dval> expr
%type <dval> mulex
%type <dval> term

The generated.h file will now have

#define INDEX 258
#define NUMBER 259
typedef union {int ival; double dval;} YYSTYPE;
extern YYSTYPE yylval;

This is illustrated in example 7.2.

5 Rules section

The rules section contains the grammar of the language you want to parse. This looks like

name1 : THING something OTHERTHING {action}
| othersomething THING {other action}

name2 :

This is the general form of context-free grammars, with a set of actions associated with
each matching right-hand side. It is a good convention to keep non-terminals (names that
can be expanded further) in lower case and terminals (the symbols that are finally matched)
in upper case.

The terminal symbols get matched with return codes from thelex tokenizer. They are typ-
ically defines coming from%token definitions in theyaccprogram or character values;
see section 4.1.

A simple example illustrating these ideas can be found in section 7.1.

6 User code section

The minimal main program is

int main()
{

yyparse();
return 0;

}

Extensions to more ambitious programs should be self-evident.

In addition to the main program, the code section will usually also contain subroutines, to
be used either in theyaccor thelexprogram. See for instance example 7.3.

3

7 Examples

7.1 Simple calculator

This calculator evaluates simple arithmetic expressions. Thelexprogram matches numbers
and operators and returns them; it ignores white space, returns newlines, and gives an error
message on anything else.

%{
#include <stdlib.h>
#include <stdio.h>
#include "calc1.h"
void yyerror(char*);
extern int yylval;

%}

%%

[\t]+ ;
[0-9]+ {yylval = atoi(yytext);

return INTEGER;}
[-+*/] {return *yytext;}
"(" {return *yytext;}
")" {return *yytext;}
\n {return *yytext;}
. {char msg[25];

sprintf(msg,"%s <%s>","invalid character",yytext);
yyerror(msg);}

Accepting thelexoutput, thisyaccprogram has rules that parse the stream of numbers and
operators, and perform the corresponding calculations.

%{
#include <stdlib.h>
#include <stdio.h>
int yylex(void);
#include "calc1.h"
%}

%token INTEGER

%%

program:
line program
| line

line:
expr ’\n’ { printf("%d\n",$1); }
| ’n’

expr:
expr ’+’ mulex { $$ = $1 + $3; }
| expr ’-’ mulex { $$ = $1 - $3; }

4

| mulex { $$ = $1; }
mulex:

mulex ’*’ term { $$ = $1 * $3; }
| mulex ’/’ term { $$ = $1 / $3; }
| term { $$ = $1; }
term:
’(’ expr ’)’ { $$ = $2; }

| INTEGER { $$ = $1; }

%%

void yyerror(char *s)
{

fprintf(stderr,"%s\n",s);
return;

}

int main(void)
{

/*yydebug=1;*/
yyparse();
return 0;

}

Here we have realized operator precedence by having separate rules for the different prior-
ities. The rule for plus/minus comes first, which means that its terms, themulex expres-
sions involving multiplication, are evaluated first.

7.2 Calculator with simple variables

In this example the return variables have been declared of type double. Furthermore, there
can now be single-character variables that can be assigned and used. There now are two
different return tokens: double values and integer variable indices. This necessitates the
%union statement, as well as%token statements for the various return tokens and%type
statements for the non-terminals.

This is all in theyaccfile:

%{
#include <stdlib.h>
#include <stdio.h>
int yylex(void);
double var[26];
%}

%union { double dval; int ivar; }
%token <dval> DOUBLE
%token <ivar> NAME
%type <dval> expr
%type <dval> mulex
%type <dval> term

5

%%

program:
line program
| line

line:
expr ’\n’ { printf("%g\n",$1); }

| NAME ’=’ expr ’\n’ { var[$1] = $3; }
expr:

expr ’+’ mulex { $$ = $1 + $3; }
| expr ’-’ mulex { $$ = $1 - $3; }

| mulex { $$ = $1; }
mulex:

mulex ’*’ term { $$ = $1 * $3; }
| mulex ’/’ term { $$ = $1 / $3; }
| term { $$ = $1; }
term:
’(’ expr ’)’ { $$ = $2; }
| NAME { $$ = var[$1]; }

| DOUBLE { $$ = $1; }

%%

void yyerror(char *s)
{

fprintf(stderr,"%s\n",s);
return;

}

int main(void)
{

/*yydebug=1;*/
yyparse();
return 0;

}

Thelexfile is not all that different; note how return values are now assigned to a component
of yylval rather thanyylval itself.

%{
#include <stdlib.h>
#include <stdio.h>
#include "calc2.h"
void yyerror(char*);
%}

%%

[\t]+ ;

6

(([0-9]+(\.[0-9]*)?)|([0-9]*\.[0-9]+)) {
yylval.dval = atof(yytext);
return DOUBLE;}

[-+*/=] {return *yytext;}
"(" {return *yytext;}
")" {return *yytext;}
[a-z] {yylval.ivar = *yytext;

return NAME;}
\n {return *yytext;}
. {char msg[25];

sprintf(msg,"%s <%s>","invalid character",yytext);
yyerror(msg);}

7.3 Calculator with dynamic variables

Basically the same as the previous example, but now variable names can have regular
names, and they are inserted into a names table dynamically. Theyaccfile defines a routine
for getting a variable index:

%{
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int yylex(void);
#define NVARS 100
char *vars[NVARS]; double vals[NVARS]; int nvars=0;
%}

%union { double dval; int ivar; }
%token <dval> DOUBLE
%token <ivar> NAME
%type <dval> expr
%type <dval> mulex
%type <dval> term

%%

program:
line program
| line

line:
expr ’\n’ { printf("%g\n",$1); }

| NAME ’=’ expr ’\n’ { vals[$1] = $3; }
expr:

expr ’+’ mulex { $$ = $1 + $3; }
| expr ’-’ mulex { $$ = $1 - $3; }

| mulex { $$ = $1; }
mulex:

mulex ’*’ term { $$ = $1 * $3; }
| mulex ’/’ term { $$ = $1 / $3; }
| term { $$ = $1; }

7

term:
’(’ expr ’)’ { $$ = $2; }
| NAME { $$ = vals[$1]; }

| DOUBLE { $$ = $1; }

%%

int varindex(char *var)
{

int i;
for (i=0; i<nvars; i++)

if (strcmp(var,vars[i])==0) return i;
vars[nvars] = strdup(var);
return nvars++;

}

int main(void)
{

/*yydebug=1;*/
yyparse();
return 0;

}

The lexfile is largely unchanged, except for the rule that recognises variable names:

%{
#include <stdlib.h>
#include <stdio.h>
#include "calc3.h"
void yyerror(char*);
int varindex(char *var);
%}

%%

[\t]+ ;
(([0-9]+(\.[0-9]*)?)|([0-9]*\.[0-9]+)) {

yylval.dval = atof(yytext);
return DOUBLE;}

[-+*/=] {return *yytext;}
"(" {return *yytext;}
")" {return *yytext;}
[a-z][a-z0-9]* {

yylval.ivar = varindex(yytext);
return NAME;}

\n {return *yytext;}
. {char msg[25];

sprintf(msg,"%s <%s>","invalid character",yytext);
yyerror(msg);}

8

	 Introduction
	 Structure of a yacc file
	 Definitions section
	 Lex Yacc interaction
	 The shared header file of return codes
	 Return values

	 Rules section
	 User code section
	 Examples
	 Simple calculator
	 Calculator with simple variables
	 Calculator with dynamic variables

